I have a math website http://finitehelp.com that teaches students Finite Math. I thought it would be cool to include a calculator so I made one for combinations and permutat
I would prefer recursive function, tail recursive may cause stackoverflow for functions like fibonacci.
Math._factorial = function(n){
return Math._fact(n,1);
}
Math._fact= function(n,res){
n = Number(n);
if (n == null) {
alert("Factorial requires a numeric argument.");
return null;
} else if (n < 2){
return res;
} else {
return Math._fact(n-1, res*n);
}
}
If you're concerned about efficiency, you'd probably want to re-implement the factorial as an iterative function rather than a recursive one. The recursive version will use a lot more memory and CPU time than the iterative version.
function factorial(n) {
var x=1;
var f=1;
while (x<=n) {
f*=x; x++;
}
return f;
}
You also shouldn't be adding your own functions to the Math namespace. It's not a good habit to get into.
Well, here we go!
First of all, why would you ever need to write this?
Math.divide = function(a,b)
{
return a/b;
}
I would do away with it completely.
You can also clean up your Math.factorial
a little bit:
Math.factorial = function(n)
{
n = Number(n);
if (isNAN(n)) {
alert("Factorial requires a numeric argument.");
return null;
} else if (n < 2) {
return 1;
} else {
return (n * Math.factorial(n - 1));
}
}
But the main problem is your onclick()
code:
onclick="var n = T1.value; var r = T2.value; var n_minus_r = parseFloat(n) - parseFloat(r); var numerator = Math.factorial(T1.value); var n_minus_r_fact = Math.factorial(n_minus_r); var r_fact = Math.factorial(r); var denominator = n_minus_r_fact * r_fact; T3.value = Math.divide(numerator,denominator); return true;
This is way too complicated. I'd make it a function and bind it to the element, which would get rid of all of the crap in your HTML and make it a bit easier to work with:
window.onload = function()
{
document.getElementById('calculate').onclick = function() {
var n = T1.value,
r = T2.value;
T3.value = Math.factorial(n) / (Math.factorial(r) * Math.factorial(n - r));
}
}
And just get rid of the onclick=
code.
As we know, combinations is short for:
So the fastest combinations implement is below:
function factorial(n) {
let r = 1;
while (n > 1) r *= n--;
return r;
}
function combinations(n,r){
let s = 1;
let i = r;
while(i<n) s*=++i;
return s/factorial(n-r)
}
combinations(5,2)
Math.factorial= function(n){
var i= n;
while(--i) n*= i;
return n;
}
Math.combinations= function(n, r, repeats){
if(n< r) return 0;
if(n=== r) return 1;
if(repeats){
return Math.factorial(n+r-1)/((Math.factorial(r)*Math.factorial(n-1)));
}
return Math.factorial(n)/((Math.factorial(r)*Math.factorial(n-r)));
}
var a= [
'aqua', 'black', 'blue', 'fuchsia', 'gray', 'green', 'lime', 'maroon',
'navy', 'olive', 'orange', 'purple', 'red', 'silver', 'teal', 'white',
'yellow'
]
//how many 3 color combinations are there?
//[red,green,blue] is different than [green,red,blue]
// Math.combinations(a.length,3,true) >>969
// how many unique combinations (ignoring order) are there?
// Math.combinations(a.length,3)>>680