This is a follow-up question to How to append an element to an array in MATLAB? That question addressed how to append an element to an array. Two approaches are dis
How about this?
function somescript
RStime = timeit(@RowSlow)
CStime = timeit(@ColSlow)
RFtime = timeit(@RowFast)
CFtime = timeit(@ColFast)
function RowSlow
rng(1)
A = zeros(1,2);
for i = 1:1e5
A = [A rand(1,1)];
end
end
function ColSlow
rng(1)
A = zeros(2,1);
for i = 1:1e5
A = [A; rand(1,1)];
end
end
function RowFast
rng(1)
A = zeros(1,2);
for i = 1:1e5
A(end+1) = rand(1,1);
end
end
function ColFast
rng(1)
A = zeros(2,1);
for i = 1:1e5
A(end+1) = rand(1,1);
end
end
end
For my machine, this yields the following timings:
RStime =
30.4064
CStime =
29.1075
RFtime =
0.3318
CFtime =
0.3351
The orientation of the vector does not seem to matter that much, but the second approach is about a factor 100 faster on my machine.
In addition to the fast growing method pointing out above (i.e., A(k+1)
), you can also get a speed increase from increasing the array size by some multiple, so that allocations become less as the size increases.
On my laptop using R2014b, a conditional doubling of size results in about a factor of 6 speed increase:
>> SO
GATime =
0.0288
DWNTime =
0.0048
In a real application, the size of A
would needed to be limited to the needed size or the unfilled results filtered out in some way.
The Code for the SO
function is below. I note that I switched to cos(k)
since, for some unknown reason, there is a large difference in performance between rand()
and rand(1,1)
on my machine. But I don't think this affects the outcome too much.
function [] = SO()
GATime = timeit(@GrowAlways)
DWNTime = timeit(@DoubleWhenNeeded)
end
function [] = DoubleWhenNeeded()
A = 0;
sizeA = 1;
for k = 1:1E5
if ((k+1) > sizeA)
A(2*sizeA) = 0;
sizeA = 2*sizeA;
end
A(k+1) = cos(k);
end
end
function [] = GrowAlways()
A = 0;
for k = 1:1E5
A(k+1) = cos(k);
end
end
A(end+1) = elem
) is fasterAccording to the benchmarks below (run with the timeit benchmarking function from File Exchange), the second approach (A(end+1) = elem
) is faster and should therefore be preferred.
Interestingly, though, the performance gap between the two approaches is much narrower in older versions of MATLAB than it is in more recent versions.
function benchmark
n = logspace(2, 5, 40);
% n = logspace(2, 4, 40);
tf = zeros(size(n));
tg = tf;
for k = 1 : numel(n)
x = rand(round(n(k)), 1);
f = @() append(x);
tf(k) = timeit(f);
g = @() addtoend(x);
tg(k) = timeit(g);
end
figure
hold on
plot(n, tf, 'bo')
plot(n, tg, 'ro')
hold off
xlabel('input size')
ylabel('time (s)')
leg = legend('y = [y, x(k)]', 'y(end + 1) = x(k)');
set(leg, 'Location', 'NorthWest');
end
% Approach 1: y = [y, x(k)];
function y = append(x)
y = [];
for k = 1 : numel(x);
y = [y, x(k)];
end
end
% Approach 2: y(end + 1) = x(k);
function y = addtoend(x)
y = [];
for k = 1 : numel(x);
y(end + 1) = x(k);
end
end