import numpy as np
def gen_c():
c = np.ones(5, dtype=int)
j = 0
t = 10
while j < t:
c[0] = j
yield c.tolist()
j += 1
# W
You can only use numpy.fromiter() to create 1-dimensional arrays (not 2-D arrays) as given in the documentation of numpy.fromiter -
numpy.fromiter(iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.
One thing you can do is convert your generator function to give out single values from c
and then create a 1D array from it and then reshape it to (-1,5)
. Example -
import numpy as np
def gen_c():
c = np.ones(5, dtype=int)
j = 0
t = 10
while j < t:
c[0] = j
for i in c:
yield i
j += 1
np.fromiter(gen_c(),dtype=int).reshape((-1,5))
Demo -
In [5]: %paste
import numpy as np
def gen_c():
c = np.ones(5, dtype=int)
j = 0
t = 10
while j < t:
c[0] = j
for i in c:
yield i
j += 1
np.fromiter(gen_c(),dtype=int).reshape((-1,5))
## -- End pasted text --
Out[5]:
array([[0, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[2, 1, 1, 1, 1],
[3, 1, 1, 1, 1],
[4, 1, 1, 1, 1],
[5, 1, 1, 1, 1],
[6, 1, 1, 1, 1],
[7, 1, 1, 1, 1],
[8, 1, 1, 1, 1],
[9, 1, 1, 1, 1]])
As the docs suggested, np.fromiter() only accepts 1-dimensional iterables.
You can use itertools.chain.from_iterable() to flatten the iterable first, and np.reshape()
it back later:
import itertools
import numpy as np
def fromiter2d(it, dtype):
# clone the iterator to get its length
it, it2 = itertools.tee(it)
length = sum(1 for _ in it2)
flattened = itertools.chain.from_iterable(it)
array_1d = np.fromiter(flattened, dtype)
array_2d = np.reshape(array_1d, (length, -1))
return array_2d
Demo:
>>> iter2d = (range(i, i + 4) for i in range(0, 12, 4))
>>> from_2d_iter(iter2d, int)
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
Only tested on Python 3.6, but should also work with Python 2.