I have a 2D array of Numpy data read from a .csv file. Each row represents a data point with the final column containing a a \'key\' which corresponds uniquely to \'key\' in
Some example data:
import numpy as np
lookup = np.array([[ 1. , 3.14 , 4.14 ],
[ 2. , 2.71818, 3.7 ],
[ 3. , 42. , 43. ]])
a = np.array([[ 1, 11],
[ 1, 12],
[ 2, 21],
[ 3, 31]])
Build a dictionary from key to row number in the lookup table:
mapping = dict(zip(lookup[:,0], range(len(lookup))))
Then you can use the dictionary to match up lines. For instance, if you just want to join the tables:
>>> np.hstack((a, np.array([lookup[mapping[key],1:]
for key in a[:,0]])))
array([[ 1. , 11. , 3.14 , 4.14 ],
[ 1. , 12. , 3.14 , 4.14 ],
[ 2. , 21. , 2.71818, 3.7 ],
[ 3. , 31. , 42. , 43. ]])
In the special case when the index can be calculated from the keys, the dictionary can be avoided. It's an advantage when the key of the lookup table can be chosen.
For Vebjorn Ljosa's example:
lookup:
>>> lookup[a[:,0]-1, :]
array([[ 1. , 3.14 , 4.14 ],
[ 1. , 3.14 , 4.14 ],
[ 2. , 2.71818, 3.7 ],
[ 3. , 42. , 43. ]])
merge:
>>> np.hstack([a, lookup[a[:,0]-1, :]])
array([[ 1. , 11. , 1. , 3.14 , 4.14 ],
[ 1. , 12. , 1. , 3.14 , 4.14 ],
[ 2. , 21. , 2. , 2.71818, 3.7 ],
[ 3. , 31. , 3. , 42. , 43. ]])