I create an arbitrary 2x2 matrix:
In [87]: mymat = np.matrix([[2,4],[5,3]])
In [88]: mymat
Out[88]:
matrix([[2, 4],
[5, 3]])
I at
From the documentation for linalg.eig:
v : (..., M, M) array
The normalized (unit "length") eigenvectors, such that the columnv[:,i]
is the eigenvector corresponding to the eigenvaluew[i]
.
You want the columns, not the rows.
>>> mymat = np.matrix([[2,4],[5,3]])
>>> vals, vecs = np.linalg.eig(mymat)
>>> vecs[:,0]
matrix([[-0.70710678],
[ 0.70710678]])
>>> (mymat * vecs[:,0])/vecs[:,0]
matrix([[-2.],
[-2.]])
>>> vecs[:,1]
matrix([[-0.62469505],
[-0.78086881]])
>>> (mymat * vecs[:,1])/vecs[:,1]
matrix([[ 7.],
[ 7.]])
No, it's true. numpy does not work correctly. Example:
A
Out[194]:
matrix([[-3, 3, 2],
[ 1, -1, -2],
[-1, -3, 0]])
E = np.linalg.eig(A)
E
Out[196]:
(array([ 2., -4., -2.]),
matrix([[ -2.01889132e-16, 9.48683298e-01, 8.94427191e-01],
[ 5.54700196e-01, -3.16227766e-01, -3.71551690e-16],
[ -8.32050294e-01, 2.73252305e-17, 4.47213595e-01]]))
A*E[1] / E[1]
Out[205]:
matrix([[ 6.59900617, -4. , -2. ],
[ 2. , -4. , -3.88449298],
[ 2. , 8.125992 , -2. ]])