eigenvectors created by numpy.linalg.eig don't seem correct

后端 未结 2 1256
闹比i
闹比i 2021-01-12 00:51

I create an arbitrary 2x2 matrix:

In [87]: mymat = np.matrix([[2,4],[5,3]])

In [88]: mymat
Out[88]: 
matrix([[2, 4],
        [5, 3]])

I at

相关标签:
2条回答
  • 2021-01-12 01:11

    From the documentation for linalg.eig:

    v : (..., M, M) array
    The normalized (unit "length") eigenvectors, such that the column v[:,i] is the eigenvector corresponding to the eigenvalue w[i].

    You want the columns, not the rows.

    >>> mymat = np.matrix([[2,4],[5,3]])
    >>> vals, vecs = np.linalg.eig(mymat)
    >>> vecs[:,0]
    matrix([[-0.70710678],
            [ 0.70710678]])
    >>> (mymat * vecs[:,0])/vecs[:,0]
    matrix([[-2.],
            [-2.]])
    >>> vecs[:,1]
    matrix([[-0.62469505],
            [-0.78086881]])
    >>> (mymat * vecs[:,1])/vecs[:,1]
    matrix([[ 7.],
            [ 7.]])
    
    0 讨论(0)
  • 2021-01-12 01:19

    No, it's true. numpy does not work correctly. Example:

    A
    Out[194]: 
    matrix([[-3,  3,  2],
            [ 1, -1, -2],
            [-1, -3,  0]])
    
    E = np.linalg.eig(A)
    
    E
    Out[196]: 
    (array([ 2., -4., -2.]),
     matrix([[ -2.01889132e-16,   9.48683298e-01,   8.94427191e-01],
             [  5.54700196e-01,  -3.16227766e-01,  -3.71551690e-16],
             [ -8.32050294e-01,   2.73252305e-17,   4.47213595e-01]]))
    
    A*E[1] / E[1]
    Out[205]: 
    matrix([[ 6.59900617, -4.        , -2.        ],
            [ 2.        , -4.        , -3.88449298],
            [ 2.        ,  8.125992  , -2.        ]])
    
    0 讨论(0)
提交回复
热议问题