Pandas select only numeric or integer field from dataframe

后端 未结 4 1798
栀梦
栀梦 2021-01-11 19:17

I have this Pandas dataframe (df):

     A    B
0    1    green
1    2    red
2    s    blue
3    3    yellow
4    b    black

A type is obje

相关标签:
4条回答
  • 2021-01-11 19:39

    Call apply on the dataframe (note the double square brackets df[['A']] rather than df['A']) and call the string method isdigit(), we then set param axis=1 to apply the lambda function row-wise. What happens here is that the index is used to create a boolean mask.

    In [66]:
    df[df[['A']].apply(lambda x: x[0].isdigit(), axis=1)]
    Out[66]:
           A       B
    Index           
    0      1   green
    1      2     red
    3      3  yellow
    

    Update

    If you're using a version 0.16.0 or newer then the following will also work:

    In [6]:
    df[df['A'].astype(str).str.isdigit()]
    
    Out[6]:
       A       B
    0  1   green
    1  2     red
    3  3  yellow
    

    Here we cast the Series to str using astype and then call the vectorised str.isdigit

    Also note that convert_objects is deprecated and one should use to_numeric for the latest versions 0.17.0 or newer

    0 讨论(0)
  • 2021-01-11 19:41

    Note that convert_objects is deprecated

    >>> df[['A']].convert_objects(convert_numeric=True)
    __main__:1: FutureWarning: convert_objects is deprecated.  Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.
    

    From 0.17.0: use pd.to_numeric, set errors='coerce' so that incorrect parsing returns NaN. Use notnull to return a boolean mask to use on the original dataframe:

    >>> df[pd.to_numeric(df.A, errors='coerce').notnull()]
       A       B
    0  1   green
    1  2     red
    3  3  yellow
    
    0 讨论(0)
  • 2021-01-11 19:45

    Personally, I think it will be more succinct to just use the built-in map compared with .apply()

    In [13]: df[map(pred, df['B'])]
    
    0 讨论(0)
  • 2021-01-11 19:58

    You can use convert_objects, which when convert_numeric=True will forcefully set all non-numeric to nan. Dropping them and indexing gets your result.

    This will be considerably faster that using apply on a larger frame as this is all implemented in cython.

    In [30]: df[['A']].convert_objects(convert_numeric=True)
    Out[30]: 
        A
    0   1
    1   2
    2 NaN
    3   3
    4 NaN
    
    In [31]: df[['A']].convert_objects(convert_numeric=True).dropna()
    Out[31]: 
       A
    0  1
    1  2
    3  3
    
    In [32]: df[['A']].convert_objects(convert_numeric=True).dropna().index
    Out[32]: Int64Index([0, 1, 3], dtype='int64')
    
    In [33]: df.iloc[df[['A']].convert_objects(convert_numeric=True).dropna().index]
    Out[33]: 
       A       B
    0  1   green
    1  2     red
    3  3  yellow
    
    0 讨论(0)
提交回复
热议问题