How can I count the number of consecutive TRUEs in a DataFrame?

后端 未结 2 1173
佛祖请我去吃肉
佛祖请我去吃肉 2021-01-11 14:58

I have a dataset made of True and False.

Sample Table:
       A      B      C
0  False   True  False
1  False  False  False
2   True   True  False
3   True           


        
相关标签:
2条回答
  • 2021-01-11 15:43

    We would basically leverage two philosophies - Catching shifts on compared array and Offsetting each column results so that we could vectorize it.

    So, with that intention set, here's one way to achieve the desired results -

    def maxisland_start_len_mask(a, fillna_index = -1, fillna_len = 0):
        # a is a boolean array
    
        pad = np.zeros(a.shape[1],dtype=bool)
        mask = np.vstack((pad, a, pad))
    
        mask_step = mask[1:] != mask[:-1]
        idx = np.flatnonzero(mask_step.T)
        island_starts = idx[::2]
        island_lens = idx[1::2] - idx[::2]
        n_islands_percol = mask_step.sum(0)//2
    
        bins = np.repeat(np.arange(a.shape[1]),n_islands_percol)
        scale = island_lens.max()+1
    
        scaled_idx = np.argsort(scale*bins + island_lens)
        grp_shift_idx = np.r_[0,n_islands_percol.cumsum()]
        max_island_starts = island_starts[scaled_idx[grp_shift_idx[1:]-1]]
    
        max_island_percol_start = max_island_starts%(a.shape[0]+1)
    
        valid = n_islands_percol!=0
        cut_idx = grp_shift_idx[:-1][valid]
        max_island_percol_len = np.maximum.reduceat(island_lens, cut_idx)
    
        out_len = np.full(a.shape[1], fillna_len, dtype=int)
        out_len[valid] = max_island_percol_len
        out_index = np.where(valid,max_island_percol_start,fillna_index)
        return out_index, out_len
    

    Sample run -

    # Generic case to handle all 0s columns
    In [112]: a
    Out[112]: 
    array([[False, False, False],
           [False, False, False],
           [ True, False, False],
           [ True, False,  True],
           [False, False, False],
           [ True, False,  True],
           [ True, False, False],
           [ True, False,  True],
           [False, False,  True],
           [ True, False, False]])
    
    In [117]: starts,lens = maxisland_start_len_mask(a, fillna_index=-1, fillna_len=0)
    
    In [118]: starts
    Out[118]: array([ 5, -1,  7])
    
    In [119]: lens
    Out[119]: array([3, 0, 2])
    
    0 讨论(0)
  • 2021-01-11 15:56

    Solution should be simplify, if always at least one True per column:

    b = df.cumsum()
    c = b.sub(b.mask(df).ffill().fillna(0)).astype(int)
    
    print (c)
       A  B  C
    0  0  1  0
    1  0  0  0
    2  1  1  0
    3  2  2  1
    4  0  3  0
    5  1  4  1
    6  2  0  0
    7  3  0  1
    8  0  1  2
    9  1  0  0
    
    #get maximal value of all columns
    length = c.max().tolist()
    print (length)
    [3, 4, 2]
    
    #get indexes by maximal value, subtract length and add 1 
    index = c.idxmax().sub(length).add(1).tolist()
    print (index)
    [5, 2, 7]
    

    Detail:

    print (pd.concat([b,
                      b.mask(df), 
                      b.mask(df).ffill(), 
                      b.mask(df).ffill().fillna(0),
                      b.sub(b.mask(df).ffill().fillna(0)).astype(int)
                      ], axis=1, 
                      keys=('cumsum', 'mask', 'ffill', 'fillna','sub')))
    
      cumsum       mask           ffill           fillna           sub      
           A  B  C    A    B    C     A    B    C      A    B    C   A  B  C
    0      0  1  0  0.0  NaN  0.0   0.0  NaN  0.0    0.0  0.0  0.0   0  1  0
    1      0  1  0  0.0  1.0  0.0   0.0  1.0  0.0    0.0  1.0  0.0   0  0  0
    2      1  2  0  NaN  NaN  0.0   0.0  1.0  0.0    0.0  1.0  0.0   1  1  0
    3      2  3  1  NaN  NaN  NaN   0.0  1.0  0.0    0.0  1.0  0.0   2  2  1
    4      2  4  1  2.0  NaN  1.0   2.0  1.0  1.0    2.0  1.0  1.0   0  3  0
    5      3  5  2  NaN  NaN  NaN   2.0  1.0  1.0    2.0  1.0  1.0   1  4  1
    6      4  5  2  NaN  5.0  2.0   2.0  5.0  2.0    2.0  5.0  2.0   2  0  0
    7      5  5  3  NaN  5.0  NaN   2.0  5.0  2.0    2.0  5.0  2.0   3  0  1
    8      5  6  4  5.0  NaN  NaN   5.0  5.0  2.0    5.0  5.0  2.0   0  1  2
    9      6  6  4  NaN  6.0  4.0   5.0  6.0  4.0    5.0  6.0  4.0   1  0  0
    

    EDIT:

    General solution working with only False columns - add numpy.where with boolean mask created by DataFrame.any:

    print (df)
           A      B      C
    0  False   True  False
    1  False  False  False
    2   True   True  False
    3   True   True  False
    4  False   True  False
    5   True   True  False
    6   True  False  False
    7   True  False  False
    8  False   True  False
    9   True  False  False
    
    b = df.cumsum()
    c = b.sub(b.mask(df).ffill().fillna(0)).astype(int)
    
    mask = df.any()
    length = np.where(mask, c.max(), -1).tolist()
    print (length)
    [3, 4, -1]
    
    index =  np.where(mask, c.idxmax().sub(c.max()).add(1), 0).tolist()
    print (index)
    [5, 2, 0]
    
    0 讨论(0)
提交回复
热议问题