I have a DataFrame in this format:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
3 10 11 12
4 13 14 15
and an array like
You could use lookup, e.g.
>>> i = pd.Series(['a', 'a', 'b', 'c', 'b'])
>>> df.lookup(i.index, i.values)
array([ 1, 4, 8, 12, 14])
where i.index
could be different from range(len(i))
if you wanted.
You can always use list comprehension:
[df.loc[idx, col] for idx, col in enumerate(['a', 'a', 'b', 'c', 'b'])]
For large datasets, you can use indexing on the base numpy data, if you're prepared to transform your column names into a numerical index (simple in this case):
df.values[arange(5),[0,0,1,2,1]]
out: array([ 1, 4, 8, 12, 14])
This will be much more efficient that list comprehensions, or other explicit iterations.