x86 assembly (MASM) - Square root of a 64-bit integer?

后端 未结 6 2066
陌清茗
陌清茗 2021-01-07 10:12

I\'m coding a simple primality tester program for Windows in x86 assembly language (MASM32), which involves calculating a square root of a (64-bit) integer. My question is:

相关标签:
6条回答
  • 2021-01-07 10:42

    There are numerous algorithms and techniques for calculating a square root of a number. In fact calculating the square root using Newton-Raphson's method is a standard assignment for Numeric Analysis students, as an example of the general case of finding the root of an equation.

    Without profiling and benchmarking the code, and knowing whether you need a single or multiple square roots (SIMD calculations such as via SSE/SSE2), I would suggest you start with @Smi's answer, which uses the x87 FPU FSQRT instruction, as your baseline implementation. This does incur a load-store hit (quick summary: moving between FPU and CPU's ALU breaks caching and pipelines) which may negate the advantage of using the built-in FPU instruction.

    Since you mentioned prime testing, I'm guessing that the sqrt is only used once per candidate number to determine the search range (any non-trivial factors are between 2 <= f <= sqrt(n), where n is the number being tested for primeness). If you are only testing specific numbers for primality it's okay, but for search lots of numbers you do square root for each candidate. If you are doing a "classic" test (pre- elliptic curve) it may not be worth worrying about.

    0 讨论(0)
  • 2021-01-07 10:44

    I think the simplest way is to use the FPU instruction fsqrt like this:

    .data?
    int64 dq ?
    squareRoot dd ?
    
    .code
    fild int64        ;load the integer to ST(0)
    fsqrt             ;compute square root and store to ST(0)
    fistp squareRoot  ;store the result in memory (as a 32-bit integer) and pop ST(0)
    
    0 讨论(0)
  • 2021-01-07 10:47

    Finally I wrote, in addition to last function for 80386+ microprocessor's, that processes a 64 Bit unsigned-integer number's square-root, a new optimized function that works for 8086+ microprocessor, in assembly.

    I've tested all these routines successfully.

    They works as the first routine written by me (see at bottom of this article), but are more optimized. Because is easy, I shows an example of the 16 Bit's algorithm in Pascal as follows (half-section algorithm):

    Function NewSqrt(X:Word):Word;
    
    Var L,H,M:LongInt;
    
    Begin
     L:=1;
     H:=X;
     M:=(X+1) ShR 1;
     Repeat
      If Sqr(M)>X Then
       H:=M
      Else
       L:=M;
      M:=(L+H) ShR 1;
     Until H-L<2;
     NewSqrt:=M;
    End;
    

    This my routine works through half-section algorithm and supports the square-root of a 64 Bit unsigned-integer number. Follows the 8086+ CPU new real-mode code:

    Function NewSqrt16(XLow,XHigh:LongInt):LongInt; Assembler;
    
    Var X0,X1,X2,X3,
        H0,H1,H2,H3,
        L0,L1,L2,L3,
        M0,M1,M2,M3:Word;
    
    Asm
    
         LEA   SI,XLow
         Mov   AX,[SS:SI]
         Mov   BX,[SS:SI+2]
    
         LEA   SI,XHigh
         Mov   CX,[SS:SI]
         Mov   DX,[SS:SI+2]
        {------------------------
         INPUT: DX:CX:BX:AX = X
         OUPUT: DX:AX= Sqrt(X).
         ------------------------
             X0    :    X1    :    X2    :    X3    -> X
             H0    :    H1    :    H2    :    H3    -> H
             L0    :    L1    :    L2    :    L3    -> L
             M0    :    M1    :    M2    :    M3    -> M
             AX    ,    BX    ,    CX    ,    DX    ,
             ES    ,    DI    ,    SI               -> Temp. reg.
         ------------------------}
         Mov   [X0],AX           {  ...}
         Mov   [X1],BX           {  ...}
         Mov   [X2],CX           {  ...}
         Mov   [X3],DX           {  Stack <- X}
    
         Mov   [H0],AX           {  ...}
         Mov   [H1],BX           {  ...}
         Mov   [H2],CX           {  ...}
         Mov   [H3],DX           {  Stack <- H= X}
    
         Mov   [L0],Word(1)      {  ...}
         Mov   [L1],Word(0)      {  ...}
         Mov   [L2],Word(0)      {  ...}
         Mov   [L3],Word(0)      {  Stack <- L= 1}
    
         Add   AX,1              {  ...}
         AdC   Bx,0              {  ...}
         AdC   Cx,0              {  ...}
         AdC   Dx,0              {  X= X+1}
    
         RCR   Dx,1              {  ...}
         RCR   Cx,1              {  ...}
         RCR   Bx,1              {  ...}
         RCR   Ax,1              {  X= (X+1)/2}
    
         Mov   [M0],AX           {  ...}
         Mov   [M1],BX           {  ...}
         Mov   [M2],CX           {  ...}
         Mov   [M3],DX           {  Stack <- M= (X+1)/2}
        {------------------------}
    @@LoopBegin:                 {Loop restart label}
    
         Mov   AX,[M3]           {If M is more ...}
         Or    AX,[M2]           {... then 32 bit ...}
         JNE   @@LoadMid         {... then Square(M)>X, jump}
        {DX:AX:CX:SI= 64 Bit square(Low(M))}
         Mov   AX,[M0]           {AX <- A=Low(M)}
         Mov   CX,AX             {CX <- A=Low(M)}
    
         Mul   AX                {DX:AX <- A*A}
    
         Mov   SI,AX             {SI <- Low 16 bit of last mul.}
         Mov   BX,DX             {BX:SI <- A*A}
    
         Mov   AX,[M1]           {AX <- D=High(M)}
         XChg  CX,AX             {AX <- A=Low(M); CX <- D=High(M)}
    
         Mul   CX                {DX:AX <- A*D=Low(M)*High(M)}
    
         XOr   DI,DI             {...}
         ShL   AX,1              {...}
         RCL   DX,1              {...}
         RCL   DI,1              {DI:DX:AX <- A*D+D*A= 2*A*D (33 Bit}
    
         Add   AX,BX             {...}
         AdC   DX,0              {...}
         AdC   DI,0              {DI:DX:AX:SI <- A*(D:A)+(D*A) ShL 16 (49 Bit)}
    
         XChg  CX,AX             {AX <- D=High(M); CX <- Low 16 bit of last mul.}
         Mov   BX,DX             {DI:BX:CX:SI <- A*(D:A)+(D*A) ShL 16 (49 Bit)}
    
         Mul   AX                {DX:AX <- D*D}
    
         Add   AX,BX             {...}
         AdC   DX,DI             {DX:AX:CX:SI <- (D:A)*(D:A)}
        {------------------------}
         Cmp   DX,[X3]           {Compare High(Square(M)):High(X)}
    
    @@LoadMid:                   {Load M in DX:BP:BX:DI}
    
         Mov   DI,[M0]           {...}
         Mov   BX,[M1]           {...}
         Mov   ES,[M2]           {...}
         Mov   DX,[M3]           {DX:ES:BX:DI <- M}
    
         JA    @@SqrMIsMoreThenX {If High(Square(M))>High(X) then Square(M)>X, jump}
         JB    @@SqrMIsLessThenX {If High(Square(M))<High(X) then Square(M)<X, jump}
    
         Cmp   AX,[X2]           {Compare High(Square(M)):High(X)}
         JA    @@SqrMIsMoreThenX {If High(Square(M))>High(X) then Square(M)>X, jump}
         JB    @@SqrMIsLessThenX {If High(Square(M))<High(X) then Square(M)<X, jump}
    
         Cmp   CX,[X1]           {Compare High(Square(M)):High(X)}
         JA    @@SqrMIsMoreThenX {If High(Square(M))>High(X) then Square(M)>X, jump}
         JB    @@SqrMIsLessThenX {If High(Square(M))<High(X) then Square(M)<X, jump}
    
         Cmp   SI,[X0]           {Compare Low(Square(M)):Low(X)}
         JA    @@SqrMIsMoreThenX {If Low(Square(M))>Low(X) then Square(M)>X, jump}
        {------------------------}
    @@SqrMIsLessThenX:           {Square(M)<=X}
    
         Mov   [L0],DI           {...}
         Mov   [L1],BX           {...}
         Mov   [L2],ES           {...}
         Mov   [L3],DX           {L= M}
    
         Jmp   @@ProcessMid      {Go to process the mid value}
        {------------------------}
    @@SqrMIsMoreThenX:           {Square(M)>X}
    
         Mov   [H0],DI           {...}
         Mov   [H1],BX           {...}
         Mov   [H2],ES           {...}
         Mov   [H3],DX           {H= M}
        {------------------------}
    @@ProcessMid:                {Process the mid value}
    
         Mov   SI,[H0]           {...}
         Mov   CX,[H1]           {...}
         Mov   AX,[H2]           {...}
         Mov   DX,[H3]           {DX:AX:CX:SI <- H}
    
         Mov   DI,SI             {DI <- H0}
         Mov   BX,CX             {BX <- H1}
    
         Add   SI,[L0]           {...}
         AdC   CX,[L1]           {...}
         AdC   AX,[L2]           {...}
         AdC   DX,[L3]           {DX:AX:CX:SI <- H+L}
    
         RCR   DX,1              {...}
         RCR   AX,1              {...}
         RCR   CX,1              {...}
         RCR   SI,1              {DX:AX:CX:SI <- (H+L)/2}
    
         Mov   [M0],SI           {...}
         Mov   [M1],CX           {...}
         Mov   [M2],AX           {...}
         Mov   [M3],DX           {M <- DX:AX:CX:SI}
        {------------------------}
         Mov   AX,[H2]           {...}
         Mov   DX,[H3]           {DX:AX:BX:DI <- H}
    
         Sub   DI,[L0]           {...}
         SbB   BX,[L1]           {...}
         SbB   AX,[L2]           {...}
         SbB   DX,[L3]           {DX:AX:BX:DI <- H-L}
    
         Or    BX,AX             {If (H-L) >= 65536 ...}
         Or    BX,DX             {...}
         JNE   @@LoopBegin       {... Repeat @LoopBegin else goes forward}
    
         Cmp   DI,2              {If (H-L) >= 2 ...}
         JAE   @@LoopBegin       {... Repeat @LoopBegin else goes forward}
        {------------------------}    
         Mov   AX,[M0]           {...}
         Mov   DX,[M1]           {@Result <- Sqrt}
    
    End;
    

    This function in input receives a 64 Bit number (XHigh:XLow) and return the 32 Bit square-root of it. Uses four local variables:

    X, the copy of input number, subdivided in four 16 Bit packages (X3:X2:X1:X0).
    H, upper limit, subdivided in four 16 Bit packages (H3:H2:H1:H0).
    L, lower limit, subdivided in four 16 Bit packages (L3:L2:L1:L0).
    M, mid value, subdivided in four 16 Bit packages (M3:M2:M1:M0).
    

    Initializes the lower limit L to 1; initializes the upper limit H to input number X; initializes the mid value M to (H+1)>>1. Test if the square of M is long more then 64 Bit by verifying if (M3 | M2)!=0; if it is true then square(M)>X, sets the upper limit H to M. If it isn't true then processes the square of the lower 32 Bits of M (M1:M0) as follows:

    (M1:M0)*(M1:M0)=
    
    M0*M0+((M0*M1)<<16)+((M1*M0)<<16)+((M1*M1)<<32)=
    M0*M0+((M0*M1)<<17)+((M1*M1)<<32)
    

    If the square of lower 32 Bits of M is greater then X, sets the upper limit H to M; if the square of lower 32 Bits of M is lower or equal then X value, sets the lower limit L to M. Processes the mid value M setting it to (L+H)>>1. If (H-L)<2 then M is the square root of X, else go to test if the square of M is long more then 64 Bit and runs the follows instructions.

    This my routine works through half-section algorithm and supports the square-root of a 64 Bit unsigned-integer number. Follows the 80386+ CPU new protected-mode code:

    Procedure NewSqrt32(X:Int64;Var Y:Int64); Assembler;
    
    {INPUT: EDX:EAX = X
      TEMP: ECX
     OUPUT: Y = Sqrt(X)}
    
    Asm
    
         Push  EBX               {Save EBX register into the stack}
         Push  ESI               {Save ESI register into the stack}
         Push  EDI               {Save EDI register into the stack}
        {------------------------}
         Mov   EAX,Y             {Load address of output var. into EAX reg.}
    
         Push  EAX               {Save address of output var. into the stack}
        {------------------------}
         LEA   EDX,X             {Load address of input var. into EDX reg.}
         Mov   EAX,[EDX]         {    EAX <- Low 32 Bit of input value (X)}
         Mov   EDX,[EDX+4]       {EDX:EAX <- Input value (X)}
        {------------------------
         [ESP+ 4]:[ESP   ]        -> X
          EBX    : ECX            -> M
          ESI    : EDI            -> L
         [ESP+12]:[ESP+ 8]        -> H
          EAX    , EDX            -> Temporary registers
         ------------------------}
         Mov   EDI,1             {    EDI <-  Low(L)= 1}
         XOr   ESI,ESI           {    ESI <- High(L)= 0}
    
         Mov   ECX,EAX           {    ECX <- Low 32 Bit of input value (X)}
         Mov   EBX,EDX           {EBX:ECX <-       M= Input value (X)}
    
         Add   ECX,EDI           {    ECX <- Low 32 Bit of (X+1)}
         AdC   EBX,ESI           {EBX:ECX <-       M= X+1}
    
         RCR   EBX,1             {    EBX <- High 32 Bit of (X+1)/2}
         RCR   ECX,1             {EBX:ECX <-       M= (X+1)/2}
        {------------------------}
         Push  EDX               {  Stack <- High(H)= High(X)}
         Push  EAX               {  Stack <-  Low(H)=  Low(X)}
    
         Push  EDX               {  Stack <- High(X)}
         Push  EAX               {  Stack <-  Low(X)}
        {------------------------}    
    @@LoopBegin:                 {Loop restart label}
    
         Cmp   EBX,0             {If M is more then 32 bit ...}
         JNE   @@SqrMIsMoreThenX {... then Square(M)>X, jump}
    
         Mov   EAX,ECX           {EAX     <- A= Low(M)}
    
         Mul   ECX               {EDX:EAX <- 64 Bit square(Low(M))}
    
         Cmp   EDX,[ESP+4]       {Compare High(Square(M)):High(X)}
         JA    @@SqrMIsMoreThenX {If High(Square(M))>High(X) then Square(M)>X, jump}
         JB    @@SqrMIsLessThenX {If High(Square(M))<High(X) then Square(M)<X, jump}
    
         Cmp   EAX,[ESP]         {Compare Low(Square(M)):Low(X)}
         JA    @@SqrMIsMoreThenX {If Low(Square(M))>Low(X) then Square(M)>X, jump}
        {------------------------}
    @@SqrMIsLessThenX:           {Square(M)<=X}
    
         Mov   EDI,ECX           {Set Low 32 Bit of L with Low 32 Bit of M}
         Mov   ESI,EBX           {ESI:EDI <- L= M}
    
         Jmp   @@ProcessMid      {Go to process the mid value}
        {------------------------}
    @@SqrMIsMoreThenX:           {Square(M)>X}
    
         Mov   [ESP+8],ECX       {Set Low 32 Bit of H with Low 32 Bit of M}
         Mov   [ESP+12],EBX      {H= M}
        {------------------------}
    @@ProcessMid:                {Process the mid value}
    
         Mov   EAX,[ESP+8]       {EAX     <- Low 32 Bit of H}
         Mov   EDX,[ESP+12]      {EDX:EAX <- H}
    
         Mov   ECX,EDI           {Set Low 32 Bit of M with Low 32 Bit of L}
         Mov   EBX,ESI           {EBX:ECX <- M= L}
    
         Add   ECX,EAX           {Set Low 32 Bit of M with Low 32 Bit of (L+H)}
         AdC   EBX,EDX           {EBX:ECX <- M= L+H}
    
         RCR   EBX,1             {Set High 32 Bit of M with High 32 Bit of (L+H)/2}
         RCR   ECX,1             {EBX:ECX <- M= (L+H)/2}
        {------------------------}
         Sub   EAX,EDI           {EAX     <- Low 32 Bit of (H-L)}
         SbB   EDX,ESI           {EDX:EAX <- H-L}
    
         Cmp   EDX,0             {If High 32 Bit of (H-L) aren't zero: (H-L) >= 2 ...}
         JNE   @@LoopBegin       {... Repeat @LoopBegin else goes forward}
    
         Cmp   EAX,2             {If (H-L) >= 2 ...}
         JAE   @@LoopBegin       {... Repeat @LoopBegin else goes forward}
        {------------------------}
         Add   ESP,16            {Remove 4 local 32 bit variables from stack}
        {------------------------}
         Pop   EDX               {Load from stack the output var. address into EDX reg.}
    
         Mov   [EDX],ECX         {Set Low 32 Bit of output var. with Low 32 Bit of Sqrt(X)}
         Mov   [EDX+4],EBX       {Y= Sqrt(X)}
        {------------------------}
         Pop   EDI               {Retrieve EDI register from the stack}
         Pop   ESI               {Retrieve ESI register from the stack}
         Pop   EBX               {Retrieve EBX register from the stack}
    
    End;
    

    This my 8086+ CPU real-mode routine works through half-section algorithm and supports the square-root of a 32 Bit unsigned-integer number; is not too fast, but may be optimized:

    Procedure _PosLongIMul2; Assembler;
    
    {INPUT:
    
     DX:AX-> First factor (destroyed).
     BX:CX-> Second factor (destroyed).
    
     OUTPUT:
    
     BX:CX:DX:AX-> Multiplication result.
    
     TEMP:
    
     BP, Di, Si}
    
    Asm
    
         Jmp   @Go
    
     @VR:DD    0      {COPY of RESULT     (LOW)}
         DD    0      {COPY of RESULT    (HIGH)}
    
     @Go:Push  BP
    
         Mov   BP,20H {32 Bit Op.}
    
         XOr   DI,DI  {COPY of first op.  (LOW)}
         XOr   SI,SI  {COPY of first op. (HIGH)}
    
         Mov   [CS:OffSet @VR  ],Word(0)
         Mov   [CS:OffSet @VR+2],Word(0)
         Mov   [CS:OffSet @VR+4],Word(0)
         Mov   [CS:OffSet @VR+6],Word(0)
    
     @01:ShR   BX,1
         RCR   CX,1
    
         JAE   @00
    
         Add   [CS:OffSet @VR  ],AX
         AdC   [CS:OffSet @VR+2],DX
         AdC   [CS:OffSet @VR+4],DI
         AdC   [CS:OffSet @VR+6],SI
    
     @00:ShL   AX,1
         RCL   DX,1
         RCL   DI,1
         RCL   SI,1
    
         Dec   BP
         JNE   @01
    
         Mov   AX,[CS:OffSet @VR]
         Mov   DX,[CS:OffSet @VR+2]
         Mov   CX,[CS:OffSet @VR+4]
         Mov   BX,[CS:OffSet @VR+6]
    
         Pop   BP
    
    End;
    
    Function _Sqrt:LongInt; Assembler;
    
    {INPUT:
    
     Di:Si-> Unsigned integer input number X.
    
     OUTPUT:
    
     DX:AX-> Square root Y=Sqrt(X).
    
     TEMP:
    
     BX, CX}
    
    Asm
    
         Jmp   @Go
    
     @Vr:DD    0 {+0  LOW}
         DD    0 {+4  HIGH}
         DD    0 {+8  Mid}
         DB    0 {+12 COUNT}
    
     @Go:Mov   [CS:OffSet @Vr],Word(0)
         Mov   [CS:OffSet @Vr+2],Word(0)
    
         Mov   [CS:OffSet @Vr+4],SI
         Mov   [CS:OffSet @Vr+6],DI
    
         Mov   [CS:OffSet @Vr+8],Word(0)
         Mov   [CS:OffSet @Vr+10],Word(0)
    
         Mov   [CS:OffSet @Vr+12],Byte(32)
    
     @02:Mov   AX,[CS:OffSet @Vr]
         Mov   DX,[CS:OffSet @Vr+2]
    
         Mov   CX,[CS:OffSet @Vr+4]
         Mov   BX,[CS:OffSet @Vr+6]
    
         Add   AX,CX
         AdC   DX,BX
    
         ShR   DX,1
         RCR   AX,1
    
         Mov   [CS:OffSet @Vr+8],AX
         Mov   [CS:OffSet @Vr+10],DX
    
         Mov   CX,AX
         Mov   BX,DX
    
         Push  DI
         Push  SI
    
         Call  _PosLongIMul2
    
         Pop   SI
         Pop   DI
    
         Or    BX,CX
         JNE   @00
    
         Cmp   DX,DI
         JA    @00
         JB    @01
    
         Cmp   AX,SI
         JA    @00
    
     @01:Mov   AX,[CS:OffSet @Vr+8]
         Mov   [CS:OffSet @Vr],AX
    
         Mov   DX,[CS:OffSet @Vr+10]
         Mov   [CS:OffSet @Vr+2],DX
    
         Dec   Byte Ptr [CS:OffSet @Vr+12]
         JNE   @02
         JE    @03
    
     @00:Mov   AX,[CS:OffSet @Vr+8]
         Mov   [CS:OffSet @Vr+4],AX
    
         Mov   DX,[CS:OffSet @Vr+10]
         Mov   [CS:OffSet @Vr+6],DX
    
         Dec   Byte Ptr [CS:OffSet @Vr+12]
         JNE   @02
    
     @03:Mov   AX,[CS:OffSet @Vr+8]
         Mov   DX,[CS:OffSet @Vr+10]
    
    End;
    

    This my 8086+ CPU real-mode routine returns a 32 Bit fixed-point number that is the square-root of a 16 Bit unsigned-integer input number; is not too fast, but may be optimized:

    Function _Sqrt2:LongInt; Assembler;
    
    {INPUT:
    
     Si-> Unsigned integer number X (unaltered).
    
     OUTPUT:
    
     AX-> Integer part of Sqrt(X).
     DX-> Decimal part of Sqrt(X).
    
     TEMP:
    
     BX, CX, DX, Di}
    
    Asm
    
         Jmp   @Go
    
     @Vr:DD    0 {+0  LOW}
         DD    0 {+4  HIGH}
         DD    0 {+8  Mid}
         DB    0 {+12 COUNT}
    
     @Go:Mov   [CS:OffSet @Vr],Word(0)
         Mov   [CS:OffSet @Vr+2],Word(0)
    
         Mov   [CS:OffSet @Vr+4],Word(0)
         Mov   [CS:OffSet @Vr+6],SI
    
         Mov   [CS:OffSet @Vr+8],Word(0)
         Mov   [CS:OffSet @Vr+10],Word(0)
    
         Mov   [CS:OffSet @Vr+12],Byte(32)
    
     @02:Mov   AX,[CS:OffSet @Vr]
         Mov   DX,[CS:OffSet @Vr+2]
    
         Mov   CX,[CS:OffSet @Vr+4]
         Mov   BX,[CS:OffSet @Vr+6]
    
         Add   AX,CX
         AdC   DX,BX
    
         ShR   DX,1
         RCR   AX,1
    
         Mov   [CS:OffSet @Vr+8],AX
         Mov   [CS:OffSet @Vr+10],DX
    
         Mov   CX,AX
         Mov   BX,DX
    
         Push  SI
    
         Call  _PosLongIMul2
    
         Pop   SI
    
         Or    BX,BX
         JNE   @00
    
         Cmp   CX,SI
         JB    @01
         JA    @00
    
         Or    DX,AX
         JNE   @00
    
     @01:Mov   AX,[CS:OffSet @Vr+8]
         Mov   [CS:OffSet @Vr],AX
    
         Mov   DX,[CS:OffSet @Vr+10]
         Mov   [CS:OffSet @Vr+2],DX
    
         Dec   Byte Ptr [CS:OffSet @Vr+12]
         JNE   @02
         JE    @03
    
     @00:Mov   AX,[CS:OffSet @Vr+8]
         Mov   [CS:OffSet @Vr+4],AX
    
         Mov   DX,[CS:OffSet @Vr+10]
         Mov   [CS:OffSet @Vr+6],DX
    
         Dec   Byte Ptr [CS:OffSet @Vr+12]
         JNE   @02
    
     @03:Mov   DX,[CS:OffSet @Vr+8]
         Mov   AX,[CS:OffSet @Vr+10]
    
    End;
    

    Hi!

    0 讨论(0)
  • 2021-01-07 10:50

    Here is my original 64-bit Square root routine:

    // X:int64    
    // sqrt64(X)
    ....
      asm      
       push ESI  {preserve ESI,EDI and EBX}
       push EDI
       push EBX
    
       mov ESI,dword ptr X      
       mov EDI,dword ptr X+4
    
       xor Eax,Eax
       xor Ebx,Ebx
       mov cx,32
    @next:
      // Add ESI,ESI   //old RCL ESI,1  -  Peter Cordes suggestion 
      // ADC EDI,EDI   //old RCL EDI,1     ~1.38x faster! 
      // ADC EBX,EBX   //old RCL Ebx,1     
    
       //Add ESI,ESI   //old RCL ESI,1
       //ADC EDI,EDI   //old RCL EDI,1
       //ADC EBX,EBX   //old RCL Ebx,1
    
       shld ebx, edi, 2   //-  Peter Cordes 41% speed up!
       shld edi, esi, 2
       lea esi, [esi*4]
    
       //mov EDX,EAX
       //Add EDX,EDX   //old shl Edx,1
       //stc
       //ADC EDX,EDX   //old RCL Edx,1    {+01}
       lea edx, [eax*4 + 1]   //-  Peter Cordes   +20% speed up
    
       cmp EBX,EDX   {if BX>=DX -> BX-DX}
      JC @skip
       sub EBX,EDX
    @skip:
       cmc           {invert C}
       ADC EAX,EAX   //old  RCL Eax,1
       dec cx
       jnz @next     // -  Peter Cordes  +40% speed up
      //LOOP @next
    
       pop EBX
       pop EDI
       pop ESI
    
       mov result,Eax
     end;
    ....
    
    0 讨论(0)
  • 2021-01-07 10:53

    You mean other than by using the FSQRT instruction? Sure, it's floating-point, but it should be easy enough to do the conversion. Otherwise you have to use something like Newton's Method.

    0 讨论(0)
  • 2021-01-07 10:53

    For a naive prime-testing loop condition, you can use the quotient from trial division to find out when your divisor has passed the sqrt: if (x / d > d) break;

    Checking if a number is prime in NASM Win64 Assembly/ has more detail, including an implementation of that in x86 asm. You're doing that division anyway to check for remainder == 0, so you get the quotient for free.

    In 64-bit code, normal integer division can be 64-bit. (But 64-bit operand-size for div is a lot slower than 32-bit on Intel so use 32-bit when possible.)

    0 讨论(0)
提交回复
热议问题