Suppose I have a dataframe (df) (Pandas) or RDD (Spark) with the following two columns:
timestamp, data
12345.0 10
12346.0 12
In Pa
In this particular case all you need is Unix timestamps and basic arithmetics:
def resample_to_minute(c, interval=1):
t = 60 * interval
return (floor(c / t) * t).cast("timestamp")
def resample_to_hour(c, interval=1):
return resample_to_minute(c, 60 * interval)
df = sc.parallelize([
("2000-01-01 00:00:00", 0), ("2000-01-01 00:01:00", 1),
("2000-01-01 00:02:00", 2), ("2000-01-01 00:03:00", 3),
("2000-01-01 00:04:00", 4), ("2000-01-01 00:05:00", 5),
("2000-01-01 00:06:00", 6), ("2000-01-01 00:07:00", 7),
("2000-01-01 00:08:00", 8)
]).toDF(["timestamp", "data"])
(df.groupBy(resample_to_minute(unix_timestamp("timestamp"), 3).alias("ts"))
.sum().orderBy("ts").show(3, False))
## +---------------------+---------+
## |ts |sum(data)|
## +---------------------+---------+
## |2000-01-01 00:00:00.0|3 |
## |2000-01-01 00:03:00.0|12 |
## |2000-01-01 00:06:00.0|21 |
## +---------------------+---------+
(df.groupBy(resample_to_hour(unix_timestamp("timestamp")).alias("ts"))
.sum().orderBy("ts").show(3, False))
## +---------------------+---------+
## |ts |sum(data)|
## +---------------------+---------+
## |2000-01-01 00:00:00.0|36 |
## +---------------------+---------+
Example data from pandas.DataFrame.resample documentation.
In general case see Making histogram with Spark DataFrame column
Here is an answer using RDDs and not dataframes:
# Generating some data to test with
import random
import datetime
startTS = 12345.0
array = [(startTS+60*k, random.randrange(10, 20)) for k in range(150)]
# Initializing a RDD
rdd = sc.parallelize(array)
# I first map the timestamps to datetime objects so I can use the datetime.replace
# method to round the times
formattedRDD = (rdd
.map(lambda (ts, data): (datetime.fromtimestamp(int(ts)), data))
.cache())
# Putting the minute and second fields to zero in datetime objects is
# exactly like rounding per hour. You can then reduceByKey to aggregate bins.
hourlyRDD = (formattedRDD
.map(lambda (time, msg): (time.replace(minute=0, second=0), 1))
.reduceByKey(lambda a, b : a + b))
hourlyHisto = hourlyRDD.collect()
print hourlyHisto
> [(datetime.datetime(1970, 1, 1, 4, 0), 60), (datetime.datetime(1970, 1, 1, 5, 0), 55), (datetime.datetime(1970, 1, 1, 3, 0), 35)]
In order to do daily aggregates you can use time.date() instead of time.replace(...). Also to bin per hour starting at a not-round date-time object you can increment the original time by the delta to the nearest round hour.