I am trying to compute the gradient of a loss, with relation to a network\'s trainable weights using Tensorflow.js in order to apply these gradients to my network\'s weight.
The error says it all.
Your issue has to do with tf.variableGrads. loss
should be a scalar computed using all available tf
tensors operators. loss
should not return a tensor as indicated in your question.
Here is an example of what loss should be:
const a = tf.variable(tf.tensor1d([3, 4]));
const b = tf.variable(tf.tensor1d([5, 6]));
const x = tf.tensor1d([1, 2]);
const f = () => a.mul(x.square()).add(b.mul(x)).sum(); // f is a function
// df/da = x ^ 2, df/db = x
const {value, grads} = tf.variableGrads(f); // gradient of f as respect of each variable
Object.keys(grads).forEach(varName => grads[varName].print());
/!\ Notice that the gradient is calculated as respect of variables created using tf.variable
Update:
You're not computing the gradients as it should be. Here is the fix.
function compute_loss(done, new_state, memory, agent, gamma=0.99) {
const f = () => { let reward_sum = 0.;
if(done) {
reward_sum = 0.;
} else {
reward_sum = agent.call(tf.oneHot(new_state, 12).reshape([1, 9, 12]))
.values.flatten().get(0);
}
let discounted_rewards = [];
let memory_reward_rev = memory.rewards;
for(let reward of memory_reward_rev.reverse()) {
reward_sum = reward + gamma * reward_sum;
discounted_rewards.push(reward_sum);
}
discounted_rewards.reverse();
let onehot_states = [];
for(let state of memory.states) {
onehot_states.push(tf.oneHot(state, 12));
}
let init_onehot = onehot_states[0];
for(let i=1; i<onehot_states.length;i++) {
init_onehot = init_onehot.concat(onehot_states[i]);
}
let log_val = agent.call(
init_onehot.reshape([memory.states.length, 9, 12])
);
let disc_reward_tensor = tf.tensor(discounted_rewards);
let advantage = disc_reward_tensor.reshapeAs(log_val.values).sub(log_val.values);
let value_loss = advantage.square();
log_val.values.print();
let policy = tf.softmax(log_val.logits);
let logits_cpy = log_val.logits.clone();
let entropy = policy.mul(logits_cpy.mul(tf.scalar(-1)));
entropy = entropy.sum();
let memory_actions = [];
for(let i=0; i< memory.actions.length; i++) {
memory_actions.push(new Array(2000).fill(0));
memory_actions[i][memory.actions[i]] = 1;
}
memory_actions = tf.tensor(memory_actions);
let policy_loss = tf.losses.softmaxCrossEntropy(memory_actions.reshape([memory.actions.length, 2000]), log_val.logits);
let value_loss_copy = value_loss.clone();
let entropy_mul = (entropy.mul(tf.scalar(0.01))).mul(tf.scalar(-1));
let total_loss_1 = value_loss_copy.mul(tf.scalar(0.5, dtype='float32'));
let total_loss_2 = total_loss_1.add(policy_loss);
let total_loss = total_loss_2.add(entropy_mul);
total_loss.print();
return total_loss.mean().asScalar();
}
return tf.variableGrads(f);
}
Notice that you can quickly run into a memory consumption issue. It will advisable to surround the function differentiated with tf.tidy
to dispose of the tensors.