My end goal is to simulate likelihood ratio test statistics, however, the core problem I am having is that I do not understand how to get TensorFlow 2 to perform many optimi
Ok so here is what I came up with. The keys things I was missing were:
minimize
function wraps the loss function in a gradient tape or some such).minimize
only does one step of the minimisation, so we need to loop over it lots of times until it converges according to some criterion.With this, I can now do the equivalent of a million minimisations in like 10 seconds on my laptop, which is pretty nice!
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import distributions as tfd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# Bunch of independent Poisson distributions that we want to combine
poises0 = [tfd.Poisson(rate = 10) for i in range(5)]
# Construct joint distributions
joint0 = tfd.JointDistributionSequential(poises0)
N = int(1e6)
samples0 = joint0.sample(N)
class Model(object):
def __init__(self):
self.mus = [tf.Variable(10*np.ones(N, dtype='float32'), name='mu{0}'.format(i),
constraint=lambda x: tf.clip_by_value(x, 0.000001, np.infty)) for i in range(5)]
def loss(self):
poises_free = [tfd.Poisson(rate = self.mus[i]) for i in range(5)]
joint_free = tfd.JointDistributionSequential(poises_free)
# Construct (half of) test statistic
self.qM = -2*(joint_free.log_prob(samples0))
self.last_loss = tf.math.reduce_sum(self.qM,axis=0)
return self.last_loss
model = Model()
# Minimise
tol = 0.01 * N
delta_loss = 1e99
prev_loss = 1e99
i = 0
print("tol:", tol)
while delta_loss > tol:
opt = tf.optimizers.SGD(0.1).minimize(model.loss,var_list=model.mus)
delta_loss = np.abs(prev_loss - model.last_loss)
print("i:", i," delta_loss:", delta_loss)
i+=1
prev_loss = model.last_loss
q0 =-2*joint0.log_prob(samples0)
q = q0 - model.qM
print("parameters:", model.mus)
print("loss:", model.last_loss)
print("q0:", q0)
print("qM:", model.qM)
fig = plt.figure()
ax = fig.add_subplot(111)
sns.distplot(q, kde=False, ax=ax, norm_hist=True)
qx = np.linspace(np.min(q),np.max(q),1000)
qy = np.exp(tfd.Chi2(df=5).log_prob(qx))
sns.lineplot(qx,qy)
plt.show()
Output:
tol: 10000.0
i: 0 delta_loss: inf
i: 1 delta_loss: 197840.0
i: 2 delta_loss: 189366.0
i: 3 delta_loss: 181456.0
i: 4 delta_loss: 174040.0
i: 5 delta_loss: 167042.0
i: 6 delta_loss: 160448.0
i: 7 delta_loss: 154216.0
i: 8 delta_loss: 148310.0
i: 9 delta_loss: 142696.0
i: 10 delta_loss: 137352.0
i: 11 delta_loss: 132268.0
i: 12 delta_loss: 127404.0
...
i: 69 delta_loss: 11894.0
i: 70 delta_loss: 11344.0
i: 71 delta_loss: 10824.0
i: 72 delta_loss: 10318.0
i: 73 delta_loss: 9860.0
parameters: [<tf.Variable 'mu0:0' shape=(1000000,) dtype=float32, numpy=
array([ 6.5849004, 14.81182 , 7.506216 , ..., 10. , 11.491933 ,
10.760278 ], dtype=float32)>, <tf.Variable 'mu1:0' shape=(1000000,) dtype=float32, numpy=
array([12.881036, 7.506216, 12.881036, ..., 7.506216, 14.186232,
10.760278], dtype=float32)>, <tf.Variable 'mu2:0' shape=(1000000,) dtype=float32, numpy=
array([16.01586 , 8.378036 , 12.198007 , ..., 6.5849004, 12.198007 ,
8.378036 ], dtype=float32)>, <tf.Variable 'mu3:0' shape=(1000000,) dtype=float32, numpy=
array([10. , 7.506216, 12.198007, ..., 9.207426, 10.760278,
11.491933], dtype=float32)>, <tf.Variable 'mu4:0' shape=(1000000,) dtype=float32, numpy=
array([ 8.378036 , 14.81182 , 10. , ..., 6.5849004, 12.198007 ,
10.760278 ], dtype=float32)>]
loss: tf.Tensor(20760090.0, shape=(), dtype=float32)
q0: tf.Tensor([31.144037 31.440613 25.355555 ... 24.183338 27.195362 22.123463], shape=(1000000,), dtype=float32)
qM: tf.Tensor([21.74377 21.64162 21.526024 ... 19.488544 22.40428 21.08519 ], shape=(1000000,), dtype=float32)
Result is now chi-squared DOF=5! Or at least pretty close.