I have downloaded an OpenStreetMap file on my desktop , and I have used my OSM file in the jupyter notebook.
My code:
import xml.et
You can extract all the data from an .osm
file through PyOsmium (A fast and flexible C++ library for working with OpenStreetMap data) and then handle it with Pandas:
Code:
import osmium as osm
import pandas as pd
class OSMHandler(osm.SimpleHandler):
def __init__(self):
osm.SimpleHandler.__init__(self)
self.osm_data = []
def tag_inventory(self, elem, elem_type):
for tag in elem.tags:
self.osm_data.append([elem_type,
elem.id,
elem.version,
elem.visible,
pd.Timestamp(elem.timestamp),
elem.uid,
elem.user,
elem.changeset,
len(elem.tags),
tag.k,
tag.v])
def node(self, n):
self.tag_inventory(n, "node")
def way(self, w):
self.tag_inventory(w, "way")
def relation(self, r):
self.tag_inventory(r, "relation")
osmhandler = OSMHandler()
# scan the input file and fills the handler list accordingly
osmhandler.apply_file("muenchen.osm")
# transform the list into a pandas DataFrame
data_colnames = ['type', 'id', 'version', 'visible', 'ts', 'uid',
'user', 'chgset', 'ntags', 'tagkey', 'tagvalue']
df_osm = pd.DataFrame(osmhandler.osm_data, columns=data_colnames)
df_osm = tag_genome.sort_values(by=['type', 'id', 'ts'])
Output: