Java OpenCV + Tesseract OCR “code” regocnition

后端 未结 1 851
后悔当初
后悔当初 2021-01-06 17:59

I\'m trying to automate a process where someone manually converts a code to a digital one.

\"Analog

相关标签:
1条回答
  • 2021-01-06 18:34

    I have decided to capture the whole card instead of the code only. By capturing the whole card it is possible to transform it to a plain perspective and then I could easily get the "code" region.

    Also I learned a lot of things. Especially regarding speed. This function is slow on high resolution images. It can take up to 10 seconds with a size of 3264 x 1836.

    What I did to speed things up, is re-sizing the input matrix by a factor of 1 / 4. Which makes it 4^2 times faster and gave me a minimal lose of precision. The next step is scaling the quadrangle which we found back to the normal size. So that we can transform the quadrangle to a plain perspective using the original source.

    The code I created for detecting the largest area is heavily based on code I found on stackoverflow. Unfortunately they didn't work as expected for me, so I combined more code snippets and modified a lot. This is what I got:

        private static double angle(Point p1, Point p2, Point p0 ) {
            double dx1 = p1.x - p0.x;
            double dy1 = p1.y - p0.y;
            double dx2 = p2.x - p0.x;
            double dy2 = p2.y - p0.y;
            return (dx1 * dx2 + dy1 * dy2) / Math.sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10);
        }
    
    
    
        private static MatOfPoint find(Mat src) throws Exception {
            Mat blurred = src.clone();
            Imgproc.medianBlur(src, blurred, 9);
    
            Mat gray0 = new Mat(blurred.size(), CvType.CV_8U), gray = new Mat();
    
            List<MatOfPoint> contours = new ArrayList<>();
    
            List<Mat> blurredChannel = new ArrayList<>();
            blurredChannel.add(blurred);
            List<Mat> gray0Channel = new ArrayList<>();
            gray0Channel.add(gray0);
    
            MatOfPoint2f approxCurve;
    
            double maxArea = 0;
            int maxId = -1;
    
            for (int c = 0; c < 3; c++) {
                int ch[] = {c, 0};
                Core.mixChannels(blurredChannel, gray0Channel, new MatOfInt(ch));
    
                int thresholdLevel = 1;
                for (int t = 0; t < thresholdLevel; t++) {
                    if (t == 0) {
                        Imgproc.Canny(gray0, gray, 10, 20, 3, true); // true ?
                        Imgproc.dilate(gray, gray, new Mat(), new Point(-1, -1), 1); // 1 ?
                    } else {
                        Imgproc.adaptiveThreshold(gray0, gray, thresholdLevel, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, (src.width() + src.height()) / 200, t);
                    }
    
                    Imgproc.findContours(gray, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
    
                    for (MatOfPoint contour : contours) {
                        MatOfPoint2f temp = new MatOfPoint2f(contour.toArray());
    
                        double area = Imgproc.contourArea(contour);
                        approxCurve = new MatOfPoint2f();
                        Imgproc.approxPolyDP(temp, approxCurve, Imgproc.arcLength(temp, true) * 0.02, true);
    
                        if (approxCurve.total() == 4 && area >= maxArea) {
                            double maxCosine = 0;
    
                            List<Point> curves = approxCurve.toList();
                            for (int j = 2; j < 5; j++)
                            {
    
                                double cosine = Math.abs(angle(curves.get(j % 4), curves.get(j - 2), curves.get(j - 1)));
                                maxCosine = Math.max(maxCosine, cosine);
                            }
    
                            if (maxCosine < 0.3) {
                                maxArea = area;
                                maxId = contours.indexOf(contour);
                                //contours.set(maxId, getHull(contour));
                            }
                        }
                    }
                }
            }
    
            if (maxId >= 0) {
                return contours.get(maxId);
                //Imgproc.drawContours(src, contours, maxId, new Scalar(255, 0, 0, .8), 8);
            }
            return null;
        }
    

    You can call it like so:

    MathOfPoint contour = find(src);
    

    See this answer for quadrangle detection from a contour and transforming it to a plain perspective: Java OpenCV deskewing a contour

    0 讨论(0)
提交回复
热议问题