you have to rewrite your code like this to get the inverse DFT which is the original image read :
#include "stdafx.h"
#include <opencv2/core/core.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main()
{
Mat I = imread("test.tif", CV_LOAD_IMAGE_GRAYSCALE);
if( I.empty())
return -1;
Mat padded; //expand input image to optimal size
int m = getOptimalDFTSize( I.rows );
int n = getOptimalDFTSize( I.cols ); // on the border add zero values
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI); // Add to the expanded another plane with zeros
dft(complexI, complexI); // this way the result may fit in the source matrix
// compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
Mat magI = planes[0];
magI += Scalar::all(1); // switch to logarithmic scale
log(magI, magI);
// crop the spectrum, if it has an odd number of rows or columns
magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
// rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = magI.cols/2;
int cy = magI.rows/2;
Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right
Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right
Mat tmp; // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);
normalize(magI, magI, 0, 1, CV_MINMAX); // Transform the matrix with float values into a
normalize(phaseVals, phaseVals, 0, 1, CV_MINMAX);
// viewable image form (float between values 0 and 1).
imshow("Input Image" , I ); // Show the result
imshow("Spectrum Magnitude", magI);
waitKey();
//calculating the idft
cv::Mat inverseTransform;
cv::dft(complexI, inverseTransform, cv::DFT_INVERSE|cv::DFT_REAL_OUTPUT);
normalize(inverseTransform, inverseTransform, 0, 1, CV_MINMAX);
imshow("Reconstructed", inverseTransform);
waitKey();
return 0;
}
I just added this part to your code :
//calculating the idft
cv::Mat inverseTransform;
cv::dft(complexI, inverseTransform, cv::DFT_INVERSE|cv::DFT_REAL_OUTPUT);
normalize(inverseTransform, inverseTransform, 0, 1, CV_MINMAX);
imshow("Reconstructed", inverseTransform);
waitKey();