I would like to fill missing values in a pandas dataframe with the average of the cells directly before and after the missing value. So if it was [1, NaN, 3], the NaN value
Use spies006's example df.
df = pd.DataFrame({'a': [10, 6, -3, -2, 4, 12, 3, 3],
'b': [6, -3, np.nan, 12, 8, 11, -5, -5],
'id': [1, 1, 1, 1, np.nan, 2, 2, 4]})
#use np.where to locate the nans and fill it with the average of surrounding elements.
df.where(df.notnull(), other=(df.fillna(method='ffill')+df.fillna(method='bfill'))/2)
Out[2517]:
a b id
0 10 6.0 1.0
1 6 -3.0 1.0
2 -3 4.5 1.0
3 -2 12.0 1.0
4 4 8.0 1.5
5 12 11.0 2.0
6 3 -5.0 2.0
7 3 -5.0 4.0
This will work if you don't have any NaN
values as the last index, which is implied to be true by your imputation methodology.
>>> data = pd.DataFrame({'a': [10, 6, -3, -2, 4, 12, 3, 3],
'b': [6, -3, np.nan, 12, 8, 11, -5, -5],
'id': [1, 1, 1, 1, np.nan, 2, 2, 4]})
>>> data
a b id
0 10 6.0 1.0
1 6 -3.0 1.0
2 -3 NaN 1.0
3 -2 12.0 1.0
4 4 8.0 NaN
5 12 11.0 2.0
6 3 -5.0 2.0
7 3 -5.0 4.0
>>> nan_cols = data.columns[data.isnull().any(axis=0)]
>>> for col in nan_cols:
... for i in range(len(data)):
... if pd.isnull(data.loc[i, col]):
... data.loc[i, col] = (data.loc[i-1, col] + data.loc[i+1, col])/2
>>> data
a b id
0 10 6.0 1.0
1 6 -3.0 1.0
2 -3 4.5 1.0
3 -2 12.0 1.0
4 4 8.0 1.5
5 12 11.0 2.0
6 3 -5.0 2.0
7 3 -5.0 4.0
Consider this dataframe
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
You can use fillna along with shift() to get the desired output
df.val = df.val.fillna((df.val.shift() + df.val.shift(-1))/2)
You get
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0