I have two separate DataFrames
which each have several differing processing stages which I use mllib
transformers in a pipeline to handle.
Pipeline
or PipelineModel
are valid PipelineStages
, and as such can be combined in a single Pipeline
. For example with:
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler
df = spark.createDataFrame([
(1.0, 0, 1, 1, 0),
(0.0, 1, 0, 0, 1)
], ("label", "x1", "x2", "x3", "x4"))
pipeline1 = Pipeline(stages=[
VectorAssembler(inputCols=["x1", "x2"], outputCol="features1")
])
pipeline2 = Pipeline(stages=[
VectorAssembler(inputCols=["x3", "x4"], outputCol="features2")
])
you can combine Pipelines
:
Pipeline(stages=[
pipeline1, pipeline2,
VectorAssembler(inputCols=["features1", "features2"], outputCol="features")
]).fit(df).transform(df)
+-----+---+---+---+---+---------+---------+-----------------+
|label|x1 |x2 |x3 |x4 |features1|features2|features |
+-----+---+---+---+---+---------+---------+-----------------+
|1.0 |0 |1 |1 |0 |[0.0,1.0]|[1.0,0.0]|[0.0,1.0,1.0,0.0]|
|0.0 |1 |0 |0 |1 |[1.0,0.0]|[0.0,1.0]|[1.0,0.0,0.0,1.0]|
+-----+---+---+---+---+---------+---------+-----------------+
or pre-fitted PipelineModels
:
model1 = pipeline1.fit(df)
model2 = pipeline2.fit(df)
Pipeline(stages=[
model1, model2,
VectorAssembler(inputCols=["features1", "features2"], outputCol="features")
]).fit(df).transform(df)
+-----+---+---+---+---+---------+---------+-----------------+
|label| x1| x2| x3| x4|features1|features2| features|
+-----+---+---+---+---+---------+---------+-----------------+
| 1.0| 0| 1| 1| 0|[0.0,1.0]|[1.0,0.0]|[0.0,1.0,1.0,0.0]|
| 0.0| 1| 0| 0| 1|[1.0,0.0]|[0.0,1.0]|[1.0,0.0,0.0,1.0]|
+-----+---+---+---+---+---------+---------+-----------------+
So the approach I would recommend is to join data beforehand, and fit
and transform
a whole DataFrame
.
See also: