#include
#include
#include
#include
using namespace std;
struct SubAlgorithm1 { void operator ()
Yes. I call the technique the magic switch.
You create a std::tuple
of your algorithms. You ceate a template function that will be passed one of those algorithms.
You can add other arguments via perfect variardic forwarding if you want.
template<size_t Max, typename...Ts, typename Func>
bool magic_switch( int n, Func&& f, std::tuple<Ts...> const & pick ) {
if( n==Max-1 ) {
f(std::get<Max-1>(pick));
return true;
} else {
return magic_switch<Max-1>( n, std::forward<Func>(f), pick );
}
}
In pseudo code. Specialize Max==0 to just return false, and you might have to make it a functor so you can partial specialize.
The passed in functor is annoying to write, as a downside.
Another variation is to use a meta-factory (well, a meta programming type factory? Maybe it is a meta-map. Well, whatever.)
#include <iostream>
#include <tuple>
#include <vector>
#include <utility>
#include <cstddef>
#include <functional>
#include <array>
#include <iostream>
// metaprogramming boilerplate:
template<template<typename>class Factory, typename SourceTuple>
struct tuple_map;
template<template<typename>class Factory, template<typename...>class L, typename... SourceTypes>
struct tuple_map<Factory, L<SourceTypes...>> {
typedef L< Factory<SourceTypes>... > type;
};
template<template<typename>class Factory, typename SourceTuple>
using MapTuple = typename tuple_map<Factory, SourceTuple>::type;
template<std::size_t...> struct seq {};
template<std::size_t max, std::size_t... s>
struct make_seq: make_seq<max-1, max-1, s...> {};
template<std::size_t... s>
struct make_seq<0, s...> {
typedef seq<s...> type;
};
template<std::size_t max>
using MakeSeq = typename make_seq<max>::type;
// neat little class that lets you type-erase the contents of a tuple,
// and turn it into a uniform array:
template<typename SourceTuple, typename DestType>
struct TupleToArray;
template<template<typename...>class L, typename... Ts, typename DestType>
struct TupleToArray<L<Ts...>, DestType> {
template<std::size_t... Index>
std::array< DestType, sizeof...(Ts) > operator()( L<Ts...> const& src, seq<Index...> ) const {
std::array< DestType, sizeof...(Ts) > retval{ DestType( std::get<Index>(src) )... };
return retval;
}
std::array< DestType, sizeof...(Ts) > operator()( L<Ts...> const& src ) const {
return (*this)( src, MakeSeq<sizeof...(Ts)>() );
}
};
template< typename DestType, typename SourceTuple >
auto DoTupleToArray( SourceTuple const& src )
-> decltype( TupleToArray<SourceTuple, DestType>()( src ) )
{
return TupleToArray<SourceTuple, DestType>()( src );
}
// Code from here on is actually specific to this problem:
struct SubAlgo { int operator()(int x) const { return x; } };
struct SubAlgo2 { int operator()(int x) const { return x+1; } };
template<typename Sub>
struct FullAlgo {
void operator()( std::vector<int>& v ) const {
for( auto& x:v )
x = Sub()( x );
}
};
// a bit messy, but I think I could clean it up:
typedef std::tuple< SubAlgo, SubAlgo2 > subAlgos;
MapTuple< FullAlgo, subAlgos > fullAlgos;
typedef std::function< void(std::vector<int>&) > funcType;
std::array< funcType, 2 > fullAlgoArray =
DoTupleToArray< funcType >( fullAlgos );
int main() {
std::vector<int> test{1,2,3};
fullAlgoArray[0]( test );
for (auto&& x: test)
std::cout << x;
std::cout << "\n";
fullAlgoArray[1]( test );
for (auto&& x: test)
std::cout << x;
std::cout << "\n";
}
which is lots of boilerplate, but what I've just done is allowed you to take your stateless sub algorithm and plug it into your full algorithm one element at a time, then type-erase the resulting full algorithm and store it in a std::function
array.
There is a virtual
call overhead, but it occurs at the top level.
You should use an interface, with both SubAlgorithm1 and SubAlgorithm2 (you'll need better names than that) implementing the interface. The create an object of either class depending on runtime_flag.