Referring to the C11 standard draft N1570:
Section 6.5.2.5p4:
In either case, the result is an lvalue.
An "lvalue" is, roughly, an expression that designates an object -- but it's important to note that not all lvalues are modifiable. A simple example:
const int x = 42;
The name x
is an lvalue, but it's not a modifiable lvalue. (Expressions of array type cannot be modifiable lvalues, because you can't assign to an array object, but the elements of an array may be modifiable.)
Paragraph 5 of the same section:
The value of the compound literal is that of an unnamed object
initialized by the initializer list. If the compound literal occurs
outside the body of a function, the object has static storage
duration; otherwise, it has automatic storage duration associated with
the enclosing block.
The section describing compound literals doesn't specifically say that whether the unnamed object is modifiable or not. In the absence of such a statement, the object is taken to be modifiable unless the type is const
-qualified.
The example in the question:
((int []) {1,2,3})[0] = 100;
is not particularly useful, since there's no way to refer to the unnamed object after the assignment. But a similar construct can be quite useful. A contrived example:
#include <stdio.h>
int main(void) {
int *ptr = (int[]){1, 2, 3};
ptr[0] = 100;
printf("%d %d %d\n", ptr[0], ptr[1], ptr[2]);
}
As mentioned above, the array has automatic storage duration, which means that if it's created inside a function, it will cease to exist when the function returns. Compound literals are not a replacement for malloc
.