I want to do calculations on three columns of a dataframe df
. In order to do that I want run a price of assets (cryptocurrencies) list in a three column table i
In your loop for i,column in enumerate(column_by_search):
you iterate over the elements in your column_by_search
list, that is column takes on the values "BTC", "ETH", "DASH" in turn. Thus, len(column)
will give you the length of the string "BTC", which is 3 in fact.
Try df[column]
instead, that will return a list with the elements in the desired column and you can iterate over it.
pandas.stats.moments.ewma
from the original answer has been deprecated.
Instead you can use pandas.DataFrame.ewm
as documented here.
Below is a complete snippet with random data that builds a dataframe with calculated ewmas from specified columns.
Code:
# imports
import pandas as pd
import numpy as np
np.random.seed(123)
rows = 50
df = pd.DataFrame(np.random.randint(90,110,size=(rows, 3)), columns=['BTC', 'ETH', 'DASH'])
datelist = pd.date_range(pd.datetime(2017, 1, 1).strftime('%Y-%m-%d'), periods=rows).tolist()
df['dates'] = datelist
df = df.set_index(['dates'])
df.index = pd.to_datetime(df.index)
def ewmas(df, win, keepSource):
"""Add exponentially weighted moving averages for all columns in a dataframe.
Arguments:
df -- pandas dataframe
win -- length of ewma estimation window
keepSource -- True or False for keep or drop source data in output dataframe
"""
df_temp = df.copy()
# Manage existing column names
colNames = list(df_temp.columns.values).copy()
removeNames = colNames.copy()
i = 0
for col in colNames:
# Make new names for ewmas
ewmaName = colNames[i] + '_ewma_' + str(win)
# Add ewmas
#df_temp[ewmaName] = pd.stats.moments.ewma(df[colNames[i]], span = win)
df_temp[ewmaName] = df[colNames[i]].ewm(span = win, adjust=True).mean()
i = i + 1
# Remove estimates with insufficient window length
df_temp = df_temp.iloc[win:]
# Remove or keep source data
if keepSource == False:
df_temp = df_temp.drop(removeNames,1)
return df_temp
# Test run
df_new = ewmas(df = df, win = 22, keepSource = True)
print(df_new.tail())
Output:
BTC ETH DASH BTC_ewma_22 ETH_ewma_22 DASH_ewma_22
dates
2017-02-15 91 96 98 98.752431 100.081052 97.926787
2017-02-16 100 102 102 98.862445 100.250270 98.285973
2017-02-17 100 107 97 98.962634 100.844749 98.172712
2017-02-18 103 102 91 99.317826 100.946384 97.541684
2017-02-19 99 104 91 99.289894 101.214755 96.966758
Plot using df_new[['BTC', 'BTC_ewma_22']].plot()
: