Plot sklearn LinearRegression output with matplotlib

前端 未结 1 605
别跟我提以往
别跟我提以往 2021-01-06 07:34

After importing the file when I separate the x_values and y_values using numpy as:

import pandas as pd
from sklearn import linear_model
from  matplotlib impo         


        
相关标签:
1条回答
  • 2021-01-06 08:10

    linear_model.LinearRegression().fit(X,y) expects its arguments

    X : numpy array or sparse matrix of shape [n_samples,n_features]
    y : numpy array of shape [n_samples, n_targets]

    Here you have 1 "feature" and 1 "target", hence the expected shape of the input would be (n_samples,1)

    While this is the case for

    x_values=dataframe[['Brain']]
    y_values=dataframe[['Body']]
    

    the shape for np.array(dataframe['Brain'],dtype=np.float64).reshape(1,-1) is (n_samples,).

    Another option to optain the desired shape from the dataframe columns would be to broadcast them to a 2D array with a new axis

    x_values=dataframe['Brain'].values[:,np.newaxis]
    y_values=dataframe['Body'].values[:,np.newaxis]
    

    Note that in order to show a nice line, you would probably want to sort the x values.

    import pandas as pd
    from sklearn import linear_model
    from  matplotlib import pyplot 
    import numpy as np
    
    #read data
    x = np.random.rand(25,2)
    x[:,1] = 2*x[:,0]+np.random.rand(25)
    dataframe = pd.DataFrame(x,columns=['Brain','Body'])
    
    
    x_values=dataframe['Brain'].values[:,np.newaxis]
    y_values=dataframe['Body'].values[:,np.newaxis]
    
    body_reg = linear_model.LinearRegression()
    body_reg.fit(x_values, y_values)
    prediction=body_reg.predict(np.sort(x_values, axis=0))
    
    pyplot.scatter(x_values, y_values)
    pyplot.plot(np.sort(x_values, axis=0),prediction)
    pyplot.show()
    

    0 讨论(0)
提交回复
热议问题