I\'m trying to create an autoencoder in keras with bucketing where the input and the output have different time steps.
model = Sequential()
#encoder
model.a
If you mean "inputs with variable lengths" and "outputs with the same lengths as the inputs", you can do this:
Warning: this solution must work with batch size = 1
You will need to create an external loop and pass each sample as a numpy array with the exact length
You cannot use masking in this solution, and the right output depends on the correct length of the input
This is a working code using Keras + Tensorflow:
Imports:
from keras.layers import *
from keras.models import Model
import numpy as np
import keras.backend as K
from keras.utils.np_utils import to_categorical
Custom functions to use in Lambda layers:
#this function gets the length from the original input
#and stores it in the final output of the encoder
def storeLength(x):
inputTensor = x[0]
storeInto = x[1] #the final output
length = K.shape(inputTensor)[1]
length = K.cast(length,K.floatx())
length = K.reshape(length,(1,1))
#will put length as the first element in the final output
return K.concatenate([length,storeInto])
#this function expands the length of the input in the decoder
def expandLength(x):
#lenght is the first element in the encoded input
length = K.cast(x[0,0],'int32') #or int64 if necessary
#the remaining elements are the actual data to be decoded
data = x[:,1:]
#a tensor with shape (length,)
length = K.ones_like(K.arange(0,length))
#make both length tensor and data tensor 3D and with paired dimensions
length = K.cast(K.reshape(length,(1,-1,1)),K.floatx())
data = K.reshape(data,(1,1,-1))
#this automatically repeats the elements based on the paired shapes
return data*length
Creating the models:
I assumed the output is equal to the input, but since you're using an Embedding, I made "num_classes" equal to the number of words.
For this solution, we use a branching, thus I had to use the functional API Model
. Which will be way better later, because you will want to train with autoencoder.train_on_batch
and then just encode with encoder.predict()
or just decode with decoder.predict()
.
vocab_size = 100
embedding_size = 7
num_class=vocab_size
hidden_size = 3
#encoder
inputs = Input(batch_shape = (1,None))
outputs = Embedding(vocab_size, embedding_size)(inputs)
outputs = LSTM(units=hidden_size, return_sequences=False)(outputs)
outputs = Lambda(storeLength)([inputs,outputs])
encoder = Model(inputs,outputs)
#decoder
inputs = Input(batch_shape=(1,hidden_size+1))
outputs = Lambda(expandLength)(inputs)
outputs = LSTM(units=hidden_size, return_sequences=True)(outputs)
outputs = TimeDistributed(Dense(num_class, activation='softmax'))(outputs)
decoder = Model(inputs,outputs)
#autoencoder
inputs = Input(batch_shape=(1,None))
outputs = encoder(inputs)
outputs = decoder(outputs)
autoencoder = Model(inputs,outputs)
#see each model's shapes
encoder.summary()
decoder.summary()
autoencoder.summary()
Just an example with fake data and the method that should be used for training:
inputData = []
outputData = []
for i in range(7,10):
inp = np.arange(i).reshape((1,i))
inputData.append(inp)
outputData.append(to_categorical(inp,num_class))
autoencoder.compile(loss='mse',optimizer='adam')
for epoch in range(1):
for inputSample,outputSample in zip(inputData,outputData):
print(inputSample.shape,outputSample.shape)
autoencoder.train_on_batch(inputSample,outputSample)
for inputSample in inputData:
print(autoencoder.predict(inputSample).shape)