I have data called veteran
stored in R. I created a survival model and now wish to predict survival probability predictions. For example, what is the probabilit
You can get predict.survreg to produce predicted times of survival for individual cases (to which you will pass values to newdata
) with varying quantiles:
casedat <- list(celltype="smallcell", karno =80, diagtime=10, age= 65 , prior=10 , trt = 2)
predict(weibull, newdata=casedat, type="quantile", p=(1:98)/100)
[1] 1.996036 3.815924 5.585873 7.330350 9.060716 10.783617
[7] 12.503458 14.223414 15.945909 17.672884 19.405946 21.146470
[13] 22.895661 24.654597 26.424264 28.205575 29.999388 31.806521
[19] 33.627761 35.463874 37.315609 39.183706 41.068901 42.971927
[25] 44.893525 46.834438 48.795420 50.777240 52.780679 54.806537
[31] 56.855637 58.928822 61.026962 63.150956 65.301733 67.480255
[37] 69.687524 71.924578 74.192502 76.492423 78.825521 81.193029
[43] 83.596238 86.036503 88.515246 91.033959 93.594216 96.197674
[49] 98.846083 **101.541291** 104.285254 107.080043 109.927857 112.831032
[55] 115.792052 118.813566 121.898401 125.049578 128.270334 131.564138
[61] 134.934720 138.386096 141.922598 145.548909 149.270101 153.091684
[67] 157.019655 161.060555 165.221547 169.510488 173.936025 178.507710
[73] 183.236126 188.133044 193.211610 198.486566 203.974520 209.694281
[79] 215.667262 221.917991 228.474741 235.370342 242.643219 250.338740
[85] 258.511005 267.225246 276.561118 286.617303 297.518110 309.423232
[91] 322.542621 337.160149 353.673075 372.662027 395.025122 422.263020
[97] 457.180183 506.048094
#asterisks added
You can then figure out which one is greater than the specified time and it looks to be around the 50th percentile, just as one might expect from a homework question.
png(); plot(x=predict(weibull, newdata=casedat, type="quantile",
p=(1:98)/100), y=(1:98)/100 , type="l")
dev.off()