Javascript, all possible sums of an array members (up to 4)

后端 未结 2 996
盖世英雄少女心
盖世英雄少女心 2021-01-06 05:36

I am unable to figure out how to write a function that will calculate all possible sums of of the elements of an array, with a max of 4 elements per addition.

Given<

相关标签:
2条回答
  • 2021-01-06 06:10

    jsFiddle Demo

    You can use a permutation subset recursive algorithm to find the set of all of the sums and also their combinations.

    var x = [1, 32, 921, 9213, 97, 23, 97, 81, 965, 82, 965, 823];
    var sums = [];
    var sets = [];
    function SubSets(read, queued){
     if( read.length == 4 || (read.length <= 4 && queued.length == 0) ){
      if( read.length > 0 ){
       var total = read.reduce(function(a,b){return a+b;},0);
       if(sums.indexOf(total)==-1){
        sums.push(total);
        sets.push(read.slice().sort());
       }
      }
     }else{
      SubSets(read.concat(queued[0]),queued.slice(1));
      SubSets(read,queued.slice(1));
     }
    }
    SubSets([],x);
    console.log(sums.sort(function(a,b){return a-b;}));
    //log sums without sort to have them line up to sets or modify previous structure
    console.log(sets);

    0 讨论(0)
  • 2021-01-06 06:15

    There is a function to generate combinations of k members of a population of n here: https://gist.github.com/axelpale/3118596.

    I won't reproduce the function here. You can combine it with another function to sum the combinations generated from an input array, e.g.

    // Add combinations of k members of set
    function getComboSums(set, k) {
      return k_combinations(arr, n).map(function(a){
        var sum=0;
        a.forEach(function(v){sum += v})
        return sum;
      });
    }
    

    This can be combined with another function to get all combinations from 2 to 4 and concatenate them all together. Note that the total number of combinations in a set of 12 members is 781.

    // Add all combinations from kStart to kEnd of set
    function getComboSumRange(set, kStart, kEnd) {
      var result = [];
      for (var i=kStart; i <= kEnd; i++) {
        result = result.concat(getComboSums(set, i));
      }
      return result;
    }
    

    Then given:

    var arr = [1, 32, 921, 9213, 97, 23, 97, 81, 965, 82, 965, 823];
    
    console.log(getComboSumRange(arr, 2, 4)) // length is 781
    

    The length of 781 agrees with the calculated number of terms based on the formula for finding combinations of k in n:

    n! / (k!(n - k)!)
    

    and summing for k = 2 -> 4.

    The result looks like:

    [33, 922, 9214, 98, 24, 98 ...  2834, 1951, 2835];
    

    You can see the terms start with:

    arr[0] + arr[1], arr[0] + arr[2]], ...
    

    and end with:

    ... arr[7] + arr[9] + arr[10] + arr[11], arr[8] + arr[9] + arr[10] + arr[11]
    
    0 讨论(0)
提交回复
热议问题