I am designing a new laboratory database with MANY types of my main entities.
The table for each entity will hold fields common to ALL types of that entity (entity_i
http://en.wikipedia.org/wiki/Entity-Attribute-Value_model
Suggest you read about the problems with entity value tables before deciding to use them.
Oracle can deal with sparsely filled tables quite well. I think you can use a similar approach as company salesforce uses. They use tables with a lot of columns, they create columns when needed. You can index those columns much better than an eav model.
So it is flexible but it performs better than an eav model.
Read: Ask Tom 1, Ask Tom 2, High Scalabilty and SalesForce.
Actually the design you described (common table plus subtype-specific tables) is called Class Table Inheritance.
Concrete Table Inheritance would have all the common attributes duplicated in the subtype tables, and you'd have no supertype table as you do now.
I'm strongly against EAV. I consider it an SQL antipattern. It may seem like an elegant solution because it requires fewer tables, but you're setting yourself up for a lot of headache later. You identified a couple of the disadvantages, but there are many others. IMHO, EAV is used appropriately only if you absolutely must not create a new table when you introduce a new subtype, or if you have an unbounded number of subtypes (e.g. users can define new attributes ad hoc).
You have many subtypes, but still a finite number of them, so if I were doing this project I'd stick with Class Table Inheritance. You may have few rows of each subtype, but at least you have some assurance that all rows in each subtype have the same columns, you can use NOT NULL
if you need to, you can use SQL data types, you can use referential integrity constraints, etc. From a relational perspective, it's a better design than EAV.
One more option that you didn't mention is called Serialized LOB. That is, add a BLOB column for a semi-structured collection of custom attributes. Store XML, YAML, JSON, or your own DSL in that column. You won't be able to parse individual attributes out of that BLOB easily with SQL, you'll have to fetch the whole BLOB back into your application and extract individual attributes in code. So in some ways it's less convenient. But if that satisfies your usage of the data, then there's nothing wrong with that.
I think it depends mostly on how you want to use this data.
First of all, I don't really see the benefit of option 3 over option 2. I think separating the special tables in another schema will make your application harder to maintain, especially if later on commonalities are found between 'special values'.
As another option I would say: - Store the special values in an XML fragment (or blob). Most databases have ability to query on XML structures these days, so without the need for many extra tables, you would keep your flexibility for a small performance hit.
If you put all the special values in one table, you get a very sparse table. Most normal DBMSes cannot handle this very well, but there are some implementations that specialize in this. You could benefit from that.
Do you often need to query the key-value pairs? if you basically access that table through it's entry_id, I think having a key-value table is not a bad design. An extra index on the kay column might even help you when you do need to query for special values. If you build an application layer on top of your database, the key-value table will map on a Map or Hash structure, which can also easily be used.
It also depends on the different types of values you want to store. If there are many different types, that need to be easily accessed (instead of being serialized/deserialized to XML/Character-String) you might want to store the type in a separate column, but that will usually lead to a very complicated design.
Hope this helps (a little bit).
-Maarten
The "Option 1" patterns is also called the "Universal Relation" At first look it seems like a short cut to not doing potentially difficult data modeling. It trades effortless data modeling for not being able to do simple select, update, delete without dramatically more effort than it would take on more usual looking data model with multiple tables.