Cross correlation using mathdotnet

前端 未结 2 960
被撕碎了的回忆
被撕碎了的回忆 2021-01-05 20:33

I have recently started using Mathdotnet Numerics statistical package to do data analysis in c#.

I am looking for the cross correlation function. Does Mathdotnet hav

相关标签:
2条回答
  • 2021-01-05 21:01

    Correlation can be calculated by any of the methods from MathNet.Numerics.Statistics.Correlation, like Pearson or Spearman. But if you're looking for results like the ones provided by Matlab's xcorr or autocorr, then you have to manually calculate the correlation using those methods for each lag/delay value between your input samples. Notice this example includes both, cross and auto correlation.

    double fs = 50; //sampling rate, Hz
    double te = 1; //end time, seconds
    int size = (int)(fs * te); //sample size
    
    var t = Enumerable.Range(0, size).Select(p => p / fs).ToArray();
    var y1 = t.Select(p => p < te / 2 ? 1.0 : 0).ToArray();
    var y2 = t.Select(p => p < te / 2 ? 1.0 - 2*p : 0).ToArray();
    
    var r12 = StatsHelper.CrossCorrelation(y1, y2); // Y1 * Y2
    var r21 = StatsHelper.CrossCorrelation(y2, y1); // Y2 * Y1
    var r11 = StatsHelper.CrossCorrelation(y1, y1); // Y1 * Y1 autocorrelation
    

    StatsHelper:

    public static class StatsHelper
    {
        public static LagCorr CrossCorrelation(double[] x1, double[] x2)
        {
            if (x1.Length != x2.Length)
                throw new Exception("Samples must have same size.");
    
            var len = x1.Length;
            var len2 = 2 * len;
            var len3 = 3 * len;
            var s1 = new double[len3];
            var s2 = new double[len3];
            var cor = new double[len2];
            var lag = new double[len2];
    
            Array.Copy(x1, 0, s1, len, len);
            Array.Copy(x2, 0, s2, 0, len);
    
            for (int i = 0; i < len2; i++)
            {
                cor[i] = Correlation.Pearson(s1, s2);
                lag[i] = i - len;
                Array.Copy(s2,0,s2,1,s2.Length-1);
                s2[0] = 0;
            }
    
            return new LagCorr { Corr = cor, Lag = lag };
        }
    }
    

    LagCorr:

    public class LagCorr
    {
        public double[] Lag { get; set; }
        public double[] Corr { get; set; }
    }
    

    EDIT: Adding Matlab comparison results:

    clear;
    step=0.02;
    t=[0:step:1-step];
    y1=ones(1,50);
    y1(26:50)=0;
    y2=[1-2*t];
    y2(26:50)=0;
    
    [cor12,lags12]=xcorr(y1,y2);
    [cor21,lags21]=xcorr(y2,y1);
    [cor11,lags11]=xcorr(y1,y1);
    [cor22,lags22]=xcorr(y2,y2);
    
    subplot(2,3,1);
    plot(t,y1);
    title('Y1');
    axis([0 1 -0.5 1.5]);
    
    subplot(2,3,2);
    plot(lags12,cor12);
    title('Y1*Y2');
    axis([-30 30 0 15]);
    
    subplot(2,3,3);
    plot(lags11,cor11);
    title('Y1*Y1');
    axis([-30 30 0 30]);
    
    subplot(2,3,4);
    plot(t,y2);
    title('Y2');
    axis([0 1 -0.5 1.5]);
    
    subplot(2,3,5);
    plot(lags21,cor21);
    title('Y2*Y1');
    axis([-30 30 0 15]);
    
    subplot(2,3,6);
    plot(lags22,cor22);
    title('Y2*Y2');
    axis([-30 30 0 10]);
    

    0 讨论(0)
  • 2021-01-05 21:20

    I have tried the above solution with a sine wave that was shifted backwards by 20 time units with respect to a first sine wave. It gave me the correct result that the maximum of the correlation is at -20 (see below). One could discuss whether its appropriate to apply a zero padding, the zeros are not usually part of the signal. The MATLAB cross-correlation is not normalized the same way, it's not a "Pearson correlation" as in the example above.

    The definition of the MATLAB cross-correlation is different: for scaling option "none" its a convolution with the time reversed signal. There are also various scaling options but none of them gives the same result as the Pearson correlation: matlab definition of xcorr

    My result: cross correlation of sin(n*0.1) with sin(n*0.1 - 20*0.1) using the example above:

    0 讨论(0)
提交回复
热议问题