While looking for a way to make animated interactive plot using matplotlib, I encountered this piece of code on Stack overflow documentation:
import numpy as
You may adapt the code from this answer to include a slider.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import mpl_toolkits.axes_grid1
import matplotlib.widgets
class Player(FuncAnimation):
def __init__(self, fig, func, frames=None, init_func=None, fargs=None,
save_count=None, mini=0, maxi=100, pos=(0.125, 0.92), **kwargs):
self.i = 0
self.min=mini
self.max=maxi
self.runs = True
self.forwards = True
self.fig = fig
self.func = func
self.setup(pos)
FuncAnimation.__init__(self,self.fig, self.update, frames=self.play(),
init_func=init_func, fargs=fargs,
save_count=save_count, **kwargs )
def play(self):
while self.runs:
self.i = self.i+self.forwards-(not self.forwards)
if self.i > self.min and self.i < self.max:
yield self.i
else:
self.stop()
yield self.i
def start(self):
self.runs=True
self.event_source.start()
def stop(self, event=None):
self.runs = False
self.event_source.stop()
def forward(self, event=None):
self.forwards = True
self.start()
def backward(self, event=None):
self.forwards = False
self.start()
def oneforward(self, event=None):
self.forwards = True
self.onestep()
def onebackward(self, event=None):
self.forwards = False
self.onestep()
def onestep(self):
if self.i > self.min and self.i < self.max:
self.i = self.i+self.forwards-(not self.forwards)
elif self.i == self.min and self.forwards:
self.i+=1
elif self.i == self.max and not self.forwards:
self.i-=1
self.func(self.i)
self.slider.set_val(self.i)
self.fig.canvas.draw_idle()
def setup(self, pos):
playerax = self.fig.add_axes([pos[0],pos[1], 0.64, 0.04])
divider = mpl_toolkits.axes_grid1.make_axes_locatable(playerax)
bax = divider.append_axes("right", size="80%", pad=0.05)
sax = divider.append_axes("right", size="80%", pad=0.05)
fax = divider.append_axes("right", size="80%", pad=0.05)
ofax = divider.append_axes("right", size="100%", pad=0.05)
sliderax = divider.append_axes("right", size="500%", pad=0.07)
self.button_oneback = matplotlib.widgets.Button(playerax, label='$\u29CF$')
self.button_back = matplotlib.widgets.Button(bax, label='$\u25C0$')
self.button_stop = matplotlib.widgets.Button(sax, label='$\u25A0$')
self.button_forward = matplotlib.widgets.Button(fax, label='$\u25B6$')
self.button_oneforward = matplotlib.widgets.Button(ofax, label='$\u29D0$')
self.button_oneback.on_clicked(self.onebackward)
self.button_back.on_clicked(self.backward)
self.button_stop.on_clicked(self.stop)
self.button_forward.on_clicked(self.forward)
self.button_oneforward.on_clicked(self.oneforward)
self.slider = matplotlib.widgets.Slider(sliderax, '',
self.min, self.max, valinit=self.i)
self.slider.on_changed(self.set_pos)
def set_pos(self,i):
self.i = int(self.slider.val)
self.func(self.i)
def update(self,i):
self.slider.set_val(i)
### using this class is as easy as using FuncAnimation:
fig, ax = plt.subplots()
x = np.linspace(0,6*np.pi, num=100)
y = np.sin(x)
ax.plot(x,y)
point, = ax.plot([],[], marker="o", color="crimson", ms=15)
def update(i):
point.set_data(x[i],y[i])
ani = Player(fig, update, maxi=len(y)-1)
plt.show()
Here is a simple adaptation of your code to add animation:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.widgets import Slider
TWOPI = 2*np.pi
fig, ax = plt.subplots()
t = np.arange(0.0, TWOPI, 0.001)
initial_amp = .5
s = initial_amp*np.sin(t)
l, = plt.plot(t, s, lw=2)
ax = plt.axis([0,TWOPI,-1,1])
axamp = plt.axes([0.25, .03, 0.50, 0.02])
# Slider
samp = Slider(axamp, 'Amp', 0, 1, valinit=initial_amp)
# Animation controls
is_manual = False # True if user has taken control of the animation
interval = 100 # ms, time between animation frames
loop_len = 5.0 # seconds per loop
scale = interval / 1000 / loop_len
def update_slider(val):
global is_manual
is_manual=True
update(val)
def update(val):
# update curve
l.set_ydata(val*np.sin(t))
# redraw canvas while idle
fig.canvas.draw_idle()
def update_plot(num):
global is_manual
if is_manual:
return l, # don't change
val = (samp.val + scale) % samp.valmax
samp.set_val(val)
is_manual = False # the above line called update_slider, so we need to reset this
return l,
def on_click(event):
# Check where the click happened
(xm,ym),(xM,yM) = samp.label.clipbox.get_points()
if xm < event.x < xM and ym < event.y < yM:
# Event happened within the slider, ignore since it is handled in update_slider
return
else:
# user clicked somewhere else on canvas = unpause
global is_manual
is_manual=False
# call update function on slider value change
samp.on_changed(update_slider)
fig.canvas.mpl_connect('button_press_event', on_click)
ani = animation.FuncAnimation(fig, update_plot, interval=interval)
plt.show()
The main change is the addition of the update_plot
function, which is used to make a FuncAnimation
in the second to last line. The animation increments from the last slider value that was set.
The variable is_manual
keeps track of when the user has clicked on the slider. After the user clicks on it, the variable is set to True
and the animation will no longer update the plot.
To resume animation, I added an on_click
function which sets is_manual = False
when the user clicks somewhere on the canvas OTHER than the slider.
Since this is a quick-and-dirty script I left variables as global, but you could easily write it up in a proper class.
Note that calling samp.set_val
implicitly calls the update_slider
function, which is also called when the user clicks directly on the slider, so we have to reset is_manual
in the update_plot
function.