How to merge two data frames based on nearest date

后端 未结 2 1996
日久生厌
日久生厌 2021-01-05 19:22

I want to merge two data frames based on two columns: \"Code\" and \"Date\". It is straightforward to merge data frames based on \"Code\", however in case of \"Date\" it bec

相关标签:
2条回答
  • 2021-01-05 19:52

    Here's an alternative solution:

    1. Merge on Code.

    2. Add a date difference column according to your need (I used abs in the example below) and sort the data using the new column.

    3. Group by the records of the first data frame and for each group take a record from the second data frame with the closest date.

    Code:

    df = df1.reset_index()[column_names1].merge(df2[column_names2], on='Code')
    df['DateDiff'] = (df['Date1'] - df['Date2']).abs()
    df.sort_values('DateDiff').groupby('index').first().reset_index()
    
    0 讨论(0)
  • 2021-01-05 19:57

    I don't think there's a quick, one-line way to do this kind of thing but I belive the best approach is to do it this way:

    1. add a column to df1 with the closest date from the appropriate group in df2

    2. call a standard merge on these

    As the size of your data grows, this "closest date" operation can become rather expensive unless you do something sophisticated. I like to use scikit-learn's NearestNeighbor code for this sort of thing.

    I've put together one approach to that solution that should scale relatively well. First we can generate some simple data:

    import pandas as pd
    import numpy as np
    dates = pd.date_range('2015', periods=200, freq='D')
    
    rand = np.random.RandomState(42)
    i1 = np.sort(rand.permutation(np.arange(len(dates)))[:5])
    i2 = np.sort(rand.permutation(np.arange(len(dates)))[:5])
    
    df1 = pd.DataFrame({'Code': rand.randint(0, 2, 5),
                        'Date': dates[i1],
                        'val1':rand.rand(5)})
    df2 = pd.DataFrame({'Code': rand.randint(0, 2, 5),
                        'Date': dates[i2],
                        'val2':rand.rand(5)})
    

    Let's check these out:

    >>> df1
       Code       Date      val1
    0     0 2015-01-16  0.975852
    1     0 2015-01-31  0.516300
    2     1 2015-04-06  0.322956
    3     1 2015-05-09  0.795186
    4     1 2015-06-08  0.270832
    
    >>> df2
       Code       Date      val2
    0     1 2015-02-03  0.184334
    1     1 2015-04-13  0.080873
    2     0 2015-05-02  0.428314
    3     1 2015-06-26  0.688500
    4     0 2015-06-30  0.058194
    

    Now let's write an apply function that adds a column of nearest dates to df1 using scikit-learn:

    from sklearn.neighbors import NearestNeighbors
    
    def find_nearest(group, match, groupname):
        match = match[match[groupname] == group.name]
        nbrs = NearestNeighbors(1).fit(match['Date'].values[:, None])
        dist, ind = nbrs.kneighbors(group['Date'].values[:, None])
    
        group['Date1'] = group['Date']
        group['Date'] = match['Date'].values[ind.ravel()]
        return group
    
    df1_mod = df1.groupby('Code').apply(find_nearest, df2, 'Code')
    >>> df1_mod
       Code       Date      val1      Date1
    0     0 2015-05-02  0.975852 2015-01-16
    1     0 2015-05-02  0.516300 2015-01-31
    2     1 2015-04-13  0.322956 2015-04-06
    3     1 2015-04-13  0.795186 2015-05-09
    4     1 2015-06-26  0.270832 2015-06-08
    

    Finally, we can merge these together with a straightforward call to pd.merge:

    >>> pd.merge(df1_mod, df2, on=['Code', 'Date'])
       Code       Date      val1      Date1      val2
    0     0 2015-05-02  0.975852 2015-01-16  0.428314
    1     0 2015-05-02  0.516300 2015-01-31  0.428314
    2     1 2015-04-13  0.322956 2015-04-06  0.080873
    3     1 2015-04-13  0.795186 2015-05-09  0.080873
    4     1 2015-06-26  0.270832 2015-06-08  0.688500
    

    Notice that rows 0 and 1 both matched the same val2; this is expected given the way you described your desired solution.

    0 讨论(0)
提交回复
热议问题