I want to merge two data frames based on two columns: \"Code\" and \"Date\". It is straightforward to merge data frames based on \"Code\", however in case of \"Date\" it bec
Here's an alternative solution:
Merge on Code.
Add a date difference column according to your need (I used abs in the example below) and sort the data using the new column.
Group by the records of the first data frame and for each group take a record from the second data frame with the closest date.
Code:
df = df1.reset_index()[column_names1].merge(df2[column_names2], on='Code')
df['DateDiff'] = (df['Date1'] - df['Date2']).abs()
df.sort_values('DateDiff').groupby('index').first().reset_index()
I don't think there's a quick, one-line way to do this kind of thing but I belive the best approach is to do it this way:
add a column to df1
with the closest date from the appropriate group in df2
call a standard merge on these
As the size of your data grows, this "closest date" operation can become rather expensive unless you do something sophisticated. I like to use scikit-learn's NearestNeighbor code for this sort of thing.
I've put together one approach to that solution that should scale relatively well. First we can generate some simple data:
import pandas as pd
import numpy as np
dates = pd.date_range('2015', periods=200, freq='D')
rand = np.random.RandomState(42)
i1 = np.sort(rand.permutation(np.arange(len(dates)))[:5])
i2 = np.sort(rand.permutation(np.arange(len(dates)))[:5])
df1 = pd.DataFrame({'Code': rand.randint(0, 2, 5),
'Date': dates[i1],
'val1':rand.rand(5)})
df2 = pd.DataFrame({'Code': rand.randint(0, 2, 5),
'Date': dates[i2],
'val2':rand.rand(5)})
Let's check these out:
>>> df1
Code Date val1
0 0 2015-01-16 0.975852
1 0 2015-01-31 0.516300
2 1 2015-04-06 0.322956
3 1 2015-05-09 0.795186
4 1 2015-06-08 0.270832
>>> df2
Code Date val2
0 1 2015-02-03 0.184334
1 1 2015-04-13 0.080873
2 0 2015-05-02 0.428314
3 1 2015-06-26 0.688500
4 0 2015-06-30 0.058194
Now let's write an apply
function that adds a column of nearest dates to df1
using scikit-learn:
from sklearn.neighbors import NearestNeighbors
def find_nearest(group, match, groupname):
match = match[match[groupname] == group.name]
nbrs = NearestNeighbors(1).fit(match['Date'].values[:, None])
dist, ind = nbrs.kneighbors(group['Date'].values[:, None])
group['Date1'] = group['Date']
group['Date'] = match['Date'].values[ind.ravel()]
return group
df1_mod = df1.groupby('Code').apply(find_nearest, df2, 'Code')
>>> df1_mod
Code Date val1 Date1
0 0 2015-05-02 0.975852 2015-01-16
1 0 2015-05-02 0.516300 2015-01-31
2 1 2015-04-13 0.322956 2015-04-06
3 1 2015-04-13 0.795186 2015-05-09
4 1 2015-06-26 0.270832 2015-06-08
Finally, we can merge these together with a straightforward call to pd.merge
:
>>> pd.merge(df1_mod, df2, on=['Code', 'Date'])
Code Date val1 Date1 val2
0 0 2015-05-02 0.975852 2015-01-16 0.428314
1 0 2015-05-02 0.516300 2015-01-31 0.428314
2 1 2015-04-13 0.322956 2015-04-06 0.080873
3 1 2015-04-13 0.795186 2015-05-09 0.080873
4 1 2015-06-26 0.270832 2015-06-08 0.688500
Notice that rows 0 and 1 both matched the same val2
; this is expected given the way you described your desired solution.