I have build a rudimentary kernel in CUDA to do an elementwise vector-vector multiplication of two complex vectors. The kernel code is inserted below (multipl
You can use cublasZdgmm.
cublasStatus_t cublasZdgmm(cublasHandle_t handle, cublasSideMode_t mode,
int m, int n,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *C, int ldc)
If what you are trying to achieve is a simple element-wise product with complex numbers, you do seem to be doing some extra steps in your multiplyElementwise
kernel that increase register usage. What you try to compute is:
f0[i].x = a*c - b*d;
f0[i].y = a*d + b*c;
since (a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c)
. By using your improved complex multiplication, you're trading 1 multiplication for 3 additions and some extra registers. Whether this can be justified or not might depend on the hardware you're using. For instance, if your hardware supports FMA (Fused Multiply-Add), that kind of optimization may not be efficient. You should consider reading this document: "Precision & Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs" which also tackles the issue of floating-point precision.
Still, you should consider using Thrust. This library offers many high-level tools to operate on both host and device vectors. You can see a long list of examples here: https://github.com/thrust/thrust/tree/master/examples. This would make your life a lot easier.
In your case, you could use this example and adapt it to something like this:
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <time.h>
struct ElementWiseProductBasic : public thrust::binary_function<float2,float2,float2>
{
__host__ __device__
float2 operator()(const float2& v1, const float2& v2) const
{
float2 res;
res.x = v1.x * v2.x - v1.y * v2.y;
res.y = v1.x * v2.y + v1.y * v2.x;
return res;
}
};
/**
* See: http://www.embedded.com/design/embedded/4007256/Digital-Signal-Processing-Tricks--Fast-multiplication-of-complex-numbers%5D
*/
struct ElementWiseProductModified : public thrust::binary_function<float2,float2,float2>
{
__host__ __device__
float2 operator()(const float2& v1, const float2& v2) const
{
float2 res;
float a, b, c, d, k;
a = v1.x;
b = v1.y;
c = v2.x;
d = v2.y;
k = a * (c + d);
d = d * (a + b);
c = c * (b - a);
res.x = k -d;
res.y = k + c;
return res;
}
};
int get_random_int(int min, int max)
{
return min + (rand() % (int)(max - min + 1));
}
thrust::host_vector<float2> init_vector(const size_t N)
{
thrust::host_vector<float2> temp(N);
for(size_t i = 0; i < N; i++)
{
temp[i].x = get_random_int(0, 10);
temp[i].y = get_random_int(0, 10);
}
return temp;
}
int main(void)
{
const size_t N = 100000;
const bool compute_basic_product = true;
const bool compute_modified_product = true;
srand(time(NULL));
thrust::host_vector<float2> h_A = init_vector(N);
thrust::host_vector<float2> h_B = init_vector(N);
thrust::device_vector<float2> d_A = h_A;
thrust::device_vector<float2> d_B = h_B;
thrust::host_vector<float2> h_result(N);
thrust::host_vector<float2> h_result_modified(N);
if (compute_basic_product)
{
thrust::device_vector<float2> d_result(N);
thrust::transform(d_A.begin(), d_A.end(),
d_B.begin(), d_result.begin(),
ElementWiseProductBasic());
h_result = d_result;
}
if (compute_modified_product)
{
thrust::device_vector<float2> d_result_modified(N);
thrust::transform(d_A.begin(), d_A.end(),
d_B.begin(), d_result_modified.begin(),
ElementWiseProductModified());
h_result_modified = d_result_modified;
}
std::cout << std::fixed;
for (size_t i = 0; i < 4; i++)
{
float2 a = h_A[i];
float2 b = h_B[i];
std::cout << "(" << a.x << "," << a.y << ")";
std::cout << " * ";
std::cout << "(" << b.x << "," << b.y << ")";
if (compute_basic_product)
{
float2 prod = h_result[i];
std::cout << " = ";
std::cout << "(" << prod.x << "," << prod.y << ")";
}
if (compute_modified_product)
{
float2 prod_modified = h_result_modified[i];
std::cout << " = ";
std::cout << "(" << prod_modified.x << "," << prod_modified.y << ")";
}
std::cout << std::endl;
}
return 0;
}
This returns:
(6.000000,5.000000) * (0.000000,1.000000) = (-5.000000,6.000000)
(3.000000,2.000000) * (0.000000,4.000000) = (-8.000000,12.000000)
(2.000000,10.000000) * (10.000000,4.000000) = (-20.000000,108.000000)
(4.000000,8.000000) * (10.000000,9.000000) = (-32.000000,116.000000)
You can then compare the timings of the two different multiplication strategies and choose what's best with your hardware.