You can use vectors and VectorUDT with UDF,
from pyspark.ml.linalg import Vectors, VectorUDT
from pyspark.sql import functions as F
ud_f = F.udf(lambda r : Vectors.dense(r),VectorUDT())
df = df.withColumn('b',ud_f('a'))
df.show()
+-------------------------+---------------------+
|a |b |
+-------------------------+---------------------+
|[0.1, 0.2, 0.3, 0.4, 0.5]|[0.1,0.2,0.3,0.4,0.5]|
+-------------------------+---------------------+
df.printSchema()
root
|-- a: array (nullable = true)
| |-- element: double (containsNull = true)
|-- b: vector (nullable = true)
About VectorUDT, http://spark.apache.org/docs/2.2.0/api/python/_modules/pyspark/ml/linalg.html