Saving Keras models with Custom Layers

前端 未结 2 1089
眼角桃花
眼角桃花 2021-01-05 14:02

I am trying to save a Keras model in a H5 file. The Keras model has a custom layer. When I try to restore the model, I get the following er

相关标签:
2条回答
  • 2021-01-05 14:34

    Correction number 1 is to use Custom_Objects while loading the Saved Model i.e., replace the code,

    new_model = tf.keras.models.load_model('model.h5') 
    

    with

    new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
    

    Since we are using Custom Layers to build the Model and before Saving it, we should use Custom Objects while Loading it.

    Correction number 2 is to add **kwargs in the __init__ function of the Custom Layer like

    def __init__(self, k, name=None, **kwargs):
            super(CustomLayer, self).__init__(name=name)
            self.k = k
            super(CustomLayer, self).__init__(**kwargs)
    

    Complete working code is shown below:

    import tensorflow as tf
    
    class CustomLayer(tf.keras.layers.Layer):
        def __init__(self, k, name=None, **kwargs):
            super(CustomLayer, self).__init__(name=name)
            self.k = k
            super(CustomLayer, self).__init__(**kwargs)
    
    
        def get_config(self):
            config = super(CustomLayer, self).get_config()
            config.update({"k": self.k})
            return config
    
        def call(self, input):
            return tf.multiply(input, 2)
    
    model = tf.keras.models.Sequential([
        tf.keras.Input(name='input_layer', shape=(10,)),
        CustomLayer(10, name='custom_layer'),
        tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
    ])
    tf.keras.models.save_model(model, 'model.h5')
    new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})
    
    print(new_model.summary())
    

    Output of the above code is shown below:

    WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
    Model: "sequential_1"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    custom_layer_1 (CustomLayer) (None, 10)                0         
    _________________________________________________________________
    output_layer (Dense)         (None, 1)                 11        
    =================================================================
    Total params: 11
    Trainable params: 11
    Non-trainable params: 0
    

    Hope this helps. Happy Learning!

    0 讨论(0)
  • 2021-01-05 14:37

    You can provide manually the mapping custom_objects in the load_model method as mentioned in the answer https://stackoverflow.com/a/62326857/8056572 but it can be tedious when you have a lot of custom layers (or any custom callables defined. e.g. metrics, losses, optimizers, ...).

    Tensorflow provides a utils function to do it automatically: tf.keras.utils.register_keras_serializable

    You have to update your CustomLayer as follows:

    import tensorflow as tf
    
    @tf.keras.utils.register_keras_serializable()
    class CustomLayer(tf.keras.layers.Layer):
        def __init__(self, k, **kwargs):
            self.k = k
            super(CustomLayer, self).__init__(**kwargs)
    
        def get_config(self):
            config = super().get_config()
            config["k"] = self.k
            return config
    
        def call(self, input):
            return tf.multiply(input, 2)
    

    Here is the complete working code:

    import tensorflow as tf
    
    
    @tf.keras.utils.register_keras_serializable()
    class CustomLayer(tf.keras.layers.Layer):
        def __init__(self, k, **kwargs):
            self.k = k
            super(CustomLayer, self).__init__(**kwargs)
    
        def get_config(self):
            config = super().get_config()
            config["k"] = self.k
            return config
    
        def call(self, input):
            return tf.multiply(input, 2)
    
    
    def main():
        model = tf.keras.models.Sequential(
            [
                tf.keras.Input(name='input_layer', shape=(10,)),
                CustomLayer(10, name='custom_layer'),
                tf.keras.layers.Dense(1, activation='sigmoid', name='output_layer')
            ]
        )
        print("SUMMARY OF THE MODEL CREATED")
        print("-" * 60)
        print(model.summary())
        model.save('model.h5')
    
        del model
    
        print()
        print()
    
        model = tf.keras.models.load_model('model.h5')
        print("SUMMARY OF THE MODEL LOADED")
        print("-" * 60)
        print(model.summary())
    
    if __name__ == "__main__":
        main()
    

    And the corresponding output:

    SUMMARY OF THE MODEL CREATED
    ------------------------------------------------------------
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    custom_layer (CustomLayer)   (None, 10)                0         
    _________________________________________________________________
    output_layer (Dense)         (None, 1)                 11        
    =================================================================
    Total params: 11
    Trainable params: 11
    Non-trainable params: 0
    _________________________________________________________________
    None
    
    
    WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
    SUMMARY OF THE MODEL LOADED
    ------------------------------------------------------------
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    custom_layer (CustomLayer)   (None, 10)                0         
    _________________________________________________________________
    output_layer (Dense)         (None, 1)                 11        
    =================================================================
    Total params: 11
    Trainable params: 11
    Non-trainable params: 0
    _________________________________________________________________
    None
    
    0 讨论(0)
提交回复
热议问题