I have this set of x and y coordinates:
x<-c(1.798805,2.402390,2.000000,3.000000,1.000000)
y<-c(0.3130147,0.4739707,0.2000000,0.8000000,0.1000000)
as.m
The square of the semi-axes are the eigenvalues of the shape matrix, times the average squared radius.
x <- c(1.798805,2.402390,2.000000,3.000000,1.000000)
y <- c(0.3130147,0.4739707,0.2000000,0.8000000,0.1000000)
d <- cbind( x, y )
library(cluster)
r <- ellipsoidhull(d)
plot( x, y, asp=1, xlim=c(0,4) )
lines( predict(r) )
e <- sqrt(eigen(r$cov)$values)
a <- sqrt(r$d2) * e[1] # semi-major axis
b <- sqrt(r$d2) * e[2] # semi-minor axis
theta <- seq(0, 2*pi, length=200)
lines( r$loc[1] + a * cos(theta), r$loc[2] + a * sin(theta) )
lines( r$loc[1] + b * cos(theta), r$loc[2] + b * sin(theta) )
You can do this:
exy <- predict(ellipsoidhull(d)) ## the ellipsoid boundary
me <- colMeans((exy)) ## center of the ellipse
Then you compute the minimum and maximum distance to get respectively minor and major axis:
dist2center <- sqrt(rowSums((t(t(exy)-me))^2))
max(dist2center) ## major axis
[1] 1.264351
> min(dist2center) ## minor axis
[1] 0.1537401
EDIT plot the ellipse with the axis:
plot(exy,type='l',asp=1)
points(d,col='blue')
points(me,col='red')
lines(rbind(me,exy[dist2center == min(dist2center),]))
lines(exy[dist2center == max(dist2center),])