I have a 3d arrays as follows:
ThreeD_Arrays = np.random.randint(0, 1000, (5, 4, 3))
array([[[715, 226, 632],
[305, 97, 534],
[ 88, 592, 90
Based on the answer to this question, we can use a MultiIndex. First, create the MultiIndex and a flattened DataFrame.
A = np.random.randint(0, 1000, (5, 4, 3))
names = ['x', 'y', 'z']
index = pd.MultiIndex.from_product([range(s)for s in A.shape], names=names)
df = pd.DataFrame({'A': A.flatten()}, index=index)['A']
Now we can reshape it however we like:
df = df.unstack(level='x').swaplevel().sort_index()
df.columns = ['A', 'B', 'C']
df.index.names = ['DATE', 'i']
This is the result:
A B C
DATE i
0 0 715 226 632
1 895 837 431
2 520 692 230
3 286 358 462
4 44 119 757
1 0 305 97 534
1 649 717 39
2 452 816 887
3 831 26 332
4 908 937 728
2 0 88 592 902
1 363 121 274
2 688 509 770
3 424 178 642
4 809 28 442
3 0 172 932 263
1 334 359 816
2 290 856 584
3 955 42 938
4 832 220 348
ThreeD_Arrays = np.random.randint(0, 1000, (5, 4, 3))
df = pd.DataFrame([list(l) for l in ThreeD_Arrays]).stack().apply(pd.Series).reset_index(1, drop=True)
df.index.name = 'Date'
df.columns = list('ABC')
You could convert your 3D array to a Pandas Panel, then flatten it to a 2D DataFrame (using .to_frame()):
import numpy as np
import pandas as pd
np.random.seed(2016)
arr = np.random.randint(0, 1000, (5, 4, 3))
pan = pd.Panel(arr)
df = pan.swapaxes(0, 2).to_frame()
df.index = df.index.droplevel('minor')
df.index.name = 'Date'
df.index = df.index+1
df.columns = list('ABC')
yields
A B C
Date
1 875 702 266
1 940 180 971
1 254 649 353
1 824 677 745
...
4 675 488 939
4 382 238 225
4 923 926 633
4 664 639 616
4 770 274 378
Alternatively, you could reshape the array to shape (20, 3)
, form the DataFrame as usual, and then fix the index:
import numpy as np
import pandas as pd
np.random.seed(2016)
arr = np.random.randint(0, 1000, (5, 4, 3))
df = pd.DataFrame(arr.reshape(-1, 3), columns=list('ABC'))
df.index = np.repeat(np.arange(arr.shape[0]), arr.shape[1]) + 1
df.index.name = 'Date'
print(df)
yields the same result.