I have a pandas dataframe that contains dates, items, and 2 values. All I\'m looking to do is output another column that is the product of column A / column B if column B is
You get that using np.where
df['C'] = np.round(np.where(df['B'] > 0, df['A']/df['B'], 0), 1)
Or if you want to use loc
df.loc[df['B'] > 0, 'C'] = df['A']/df['B']
and then fillna(0)
Option 1
You use pd.Series.mask
to hide zeros, and then just empty cells with fillna
.
v = (df.A / df.B.mask(df.B == 0)).fillna(0)
v
0 0.000000
1 0.000000
2 2.500000
3 4.000000
4 1.000000
5 0.000000
6 1.000000
7 1.000000
8 0.333333
9 0.000000
10 1.666667
11 0.000000
dtype: float64
df['C'] = v
Alternatively, replace those zeros with np.inf
, because x / inf = 0
.
df['C'] = (df.A / df.B.mask(df.B == 0, np.inf))
Option 2
Direct replacement with df.replace
df.A / df.B.replace(0, np.inf)
0 0.000000
1 0.000000
2 2.500000
3 4.000000
4 1.000000
5 0.000000
6 1.000000
7 1.000000
8 0.333333
9 0.000000
10 1.666667
11 0.000000
dtype: float64
Keep in mind, you can do an astype
conversion, if you want mixed integers and floats as your result:
df.A.div(df.B.replace(0, np.inf)).astype(object)
0 0
1 0
2 2.5
3 4
4 1
5 0
6 1
7 1
8 0.333333
9 0
10 1.66667
11 0
dtype: object