Let\'s say I have created and compiled a simple program using the MinGW 64 (g++ compiler). Running this program on my computer and looking in Process Explorer for what DLL f
libstdc++6.dll is the C++ standard library, like you said.
libwinpthread-1.dll is for C++11 threading support. MinGW-W64 has two possible thread variants: Either use the native Windows functions like CreateThread, but C++11 stuff like std::thread won´t be available then; or include this library and use the C++11 classes (too).
Note that to switch the thread model, you´ll need to reinstall MinGW. Just removing the DLL and not using the C++11 stuff won´t work, the DLL will be required nonetheless with your current install.
libgcc_s_seh-1.dll is something about C++ exception handling.
Yes, it should be sufficient to deliver the DLLs too
(or use static linking and deliver only your program file).
I used ntldd to get a list of dependencies. https://github.com/LRN/ntldd I'm using msys2 so i just installed it with pacman. Use that and then copy all the needed dependencies
You may like to add the options -static-libgcc
and -static-libstdc++
to link the C and C++ standard libraries statically and thus remove the need to carry around any separate copies of those.
For complicated projects where you're not exactly sure which DLL files need to be included to distribute your application, I made a handy dandy Bash script (for MSYS2 shells) that can tell you exactly what DLL files you need to include. It relies on the Dependency Walker binary.
#!/usr/bin/sh
depends_bin="depends.exe"
target="./build/main.exe" # Or wherever your binary is
temp_file=$(mktemp)
output="dll_list.txt"
MSYS2_ARG_CONV_EXCL="*" `cygpath -w $depends_bin` /c /oc:`cygpath -w $temp_file` `cygpath -w $target`
cat $temp_file | cut -d , -f 2 | grep mingw32 > $output
rm $temp_file
Note that this script would need to be modified slightly for use in regular MSYS (the MSYS2_ARG_CONV_EXCL and cygpath directives in particular). This script also assumes your MinGW DLL files are located in a path which contains MinGW.
You could potentially even use this script to automatically copy the DLL files in question into your build directory as part of an automatic deploy system.
There are several major challenges to distributing compiled software:
Compiling the code for all target processors (remember, when it comes to compiled code, you need to produce separate downloads/distributions for each type of instruction set architecture).
Ensuring that the builds are reproducible, consistent, and can be easily correlated with a specific version of the code (and versions of the dependencies).
Ensuring that the build output is self-contained and includes all of its dependencies within it (so that it is not dependent on any other installations that happen to exist on just your system).
Making sure that your code is built and distributed regularly, with updates distributed automatically so that -- in the event of security issues -- you can push out new patched versions.
For convenience and to increase reach, it is nice for non-savvy users to have a prebuilt version that they can install. However, I would recommend sharing the source code as a first step.
Most of these requirements are fairly non-trivial to hit and often require automating not only build process, but also automating the instantiation / configuration of VMs in which the build should take place. However, there are open source projects that can help... for example, check out Gitian.
In terms of bullet point #3, the key thing here is to use static linking... while this does make the binary you distribute much larger (because its dependencies are now baked into the output), it also makes your binary isolated from the version of the libraries on the system (avoiding "dependency hell").
Point #4 is very tricky, but thankfully there are also opensource tools to help here, as well such as cloudup, which provides a way to add auto-updating capability to your application distribution.