Converting Pandas DatetimeIndex to a numeric format

前端 未结 5 2080
遥遥无期
遥遥无期 2021-01-05 07:30

I want to convert the DatetimeIndex in my DataFrame to float format,which can be analysed in my model.Could someone tell me how to do it? Do I need to use date2num()functio

相关标签:
5条回答
  • 2021-01-05 08:04

    I found another solution:

    df['date'] = df['date'].astype('datetime64').astype(int).astype(float)
    
    0 讨论(0)
  • 2021-01-05 08:20

    Convert to Timedelta and extract the total seconds from dt.total_seconds:

    df
    
            date
    0 2013-01-01
    1 2013-01-02
    2 2013-01-03
    3 2013-01-04
    4 2013-01-05
    5 2013-01-06
    6 2013-01-07
    7 2013-01-08
    8 2013-01-09
    9 2013-01-10
    
    pd.to_timedelta(df.date).dt.total_seconds()
    
    0    1.356998e+09
    1    1.357085e+09
    2    1.357171e+09
    3    1.357258e+09
    4    1.357344e+09
    5    1.357430e+09
    6    1.357517e+09
    7    1.357603e+09
    8    1.357690e+09
    9    1.357776e+09
    Name: date, dtype: float64
    

    Or, maybe, the data would be more useful presented as an int type:

    pd.to_timedelta(df.date).dt.total_seconds().astype(int)
    
    0    1356998400
    1    1357084800
    2    1357171200
    3    1357257600
    4    1357344000
    5    1357430400
    6    1357516800
    7    1357603200
    8    1357689600
    9    1357776000
    Name: date, dtype: int64
    
    0 讨论(0)
  • 2021-01-05 08:21

    If you only want specific parts of your DateTimeIndex, try this:

    ADDITIONAL = 1
    ddf_c['ts_part_numeric'] = ((ddf_c.index.dt.year * (10000 * ADDITIONAL)) + (ddf_c.index.dt.month * (100 * ADDITIONAL)) + ((ddf_c.index.dt.day) * ADDITIONAL))
    

    Output is

    20190523
    20190524
    

    Could adjust it to your time resolution needed.

    0 讨论(0)
  • 2021-01-05 08:25

    I believe this offers another solution, here assuming a dataframe with a DatetimeIndex.

    pd.to_numeric(df.index, downcast='float')
    # although normally I would prefer an integer, and to coerce errors to NaN
    pd.to_numeric(df.index, errors = 'coerce',downcast='integer')
    
    0 讨论(0)
  • 2021-01-05 08:26

    Use astype float i.e if you have a dataframe like

    df = pd.DataFrame({'date': ['1998-03-01 00:00:01', '2001-04-01 00:00:01','1998-06-01 00:00:01','2001-08-01 00:00:01','2001-05-03 00:00:01','1994-03-01 00:00:01'] })
    df['date'] = pd.to_datetime(df['date'])
    df['x'] = list('abcdef')
    df = df.set_index('date')
    

    Then

    df.index.values.astype(float)
    
    array([  8.88710401e+17,   9.86083201e+17,   8.96659201e+17,
         9.96624001e+17,   9.88848001e+17,   7.62480001e+17])
    
    pd.to_datetime(df.index.values.astype(float))
    
    DatetimeIndex(['1998-03-01 00:00:01', '2001-04-01 00:00:01',
               '1998-06-01 00:00:01', '2001-08-01 00:00:01',
               '2001-05-03 00:00:01', '1994-03-01 00:00:01'],
              dtype='datetime64[ns]', freq=None)
    
    0 讨论(0)
提交回复
热议问题