For more details:
With H(N) = 1 + 1/2 + 1/3 + ... + 1/N
the function x :-> 1/x
is a decreasing function so :
We sum from 1 to N
the left part and for the right part we sum from 2 to N
and we add 1
, we get:
Then we calculate the left and right parts : ln(N+1) <= H(N) <= 1 + ln(N)
this implies H(N)/ln(N) -> 1
hence H(N)=Θ(log(N))
(from http://fr.wikipedia.org/wiki/S%C3%A9rie_harmonique#.C3.89quivalent_de_Hn)