Efficiently perform row-wise distribution test

前端 未结 4 602
陌清茗
陌清茗 2021-01-05 02:43

I have a matrix in which each row is a sample from a distribution. I want to do a rolling comparison of the distributions using ks.test and save the test statis

相关标签:
4条回答
  • 2021-01-05 03:09

    One source of speed up is to write a smaller version of ks.test that does less. ks.test2 below is more restrictive than ks.test. It assumes, for example, that you have no missing values and that you always want the statistic associated with a two-sided test.

    ks.test2 <- function(x, y){
    
      n.x <- length(x)
      n.y <- length(y)
      w <- c(x, y)
      z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y))
    
      max(abs(z))
    
    }
    

    Verify that the output is consistent with ks.test.

    set.seed(999)
    x <- rnorm(400)
    y <- rnorm(400)
    
    ks.test(x, y)$statistic
    
        D 
    0.045
    
    ks.test2(x, y)
    
    [1] 0.045
    

    Now determine the savings from the smaller function:

    library(microbenchmark)
    
    microbenchmark(
      ks.test(x, y),
      ks.test2(x, y)
      )
    
    Unit: microseconds
               expr      min       lq      mean   median        uq      max neval cld
      ks.test(x, y) 1030.238 1070.303 1347.3296 1227.207 1313.8490 6338.918   100   b
     ks.test2(x, y)  709.719  730.048  832.9532  833.861  888.5305 1281.284   100  a 
    
    0 讨论(0)
  • 2021-01-05 03:12

    A quick and dirty implementation in Rcpp

    // [[Rcpp::depends(RcppArmadillo)]]
    #include <RcppArmadillo.h> 
    
    double KS(arma::colvec x, arma::colvec y) {
      int n = x.n_rows;
      arma::colvec w = join_cols(x, y);
      arma::uvec z = arma::sort_index(w);
      w.fill(-1); w.elem( find(z <= n-1) ).ones();
      return max(abs(cumsum(w)))/n;
    }
    // [[Rcpp::export]]
    Rcpp::NumericVector K_S(arma::mat mt) {
      int n = mt.n_cols; 
      Rcpp::NumericVector results(n);
      for (int i=1; i<n;i++) {
        arma::colvec x=mt.col(i-1);
        arma::colvec y=mt.col(i);
        results[i] = KS(x, y);
        }
      return results;
    }
    

    for matrix of size (400, 30000), it completes under 1s.

    system.time(K_S(t(mt)))[3]
    #elapsed 
    #   0.98 
    

    And the result seems to be accurate.

    set.seed(1942)
    mt <- matrix(rnorm(400*30000), nrow=30000)
    results <- rep(0, nrow(mt))
    for (i in 2 : nrow(mt)) {
      results[i] <- ks.test(x = mt[i - 1, ], y = mt[i, ])$statistic
    }
    result <- K_S(t(mt))
    all.equal(result, results)
    #[1] TRUE
    
    0 讨论(0)
  • 2021-01-05 03:15

    I was able to compute the pairwise Kruskal-Wallis statistic using ks.test() with rollapplyr().

    results <- rollapplyr(data = big,
                          width = 2,
                          FUN = function(x) ks.test(x[1, ], x[2, ])$statistic,
                          by.column = FALSE)
    

    This gets the expected result, but it's slow for a dataset of your size. Slow slow slow. This may be because ks.test() is computing a lot more than just the statistic at each iteration; it also gets the p-value and does a lot of error checking.

    Indeed, if we simulate a large dataset like so:

    big <- NULL
    for (i in 1:400) {
        big <- cbind(big, rnorm(300000))
    }
    

    The rollapplyr() solution takes a long time; I halted execution after about 2 hours, at which point it had computed nearly all (but not all) results.

    It seems that while rollapplyr() is likely faster than a for loop, it will not likely be the best overall solution in terms of performance.

    0 讨论(0)
  • 2021-01-05 03:19

    Here's a dplyr solution that gets the same result as your loop. I have my doubts if this is actually faster than the loop, but perhaps it can serve as a first step towards a solution.

    require(dplyr)
    mt %>% 
      as.data.frame %>%
      mutate_each(funs(lag)) %>%
      cbind(mt) %>%
      slice(-1) %>%
      rowwise %>%
      do({
        x = unlist(.)
        n <- length(x)
        data.frame(ks = ks.test(head(x, n/2), tail(x, n/2))$statistic)
      }) %>%
      unlist %>%
      c(NA, .) %>%
      matrix
    
    0 讨论(0)
提交回复
热议问题