Compute coordinates from source images after stitching

后端 未结 1 671
礼貌的吻别
礼貌的吻别 2021-01-04 21:17

I use an algorithm of panorama stitching from opencv, in order to stitch 2 or 3 images into one new result image.

I have coordinates of points in each source image.

相关标签:
1条回答
  • 2021-01-04 21:42

    When I was a school boy, I foundopencv/samples/cpp/stitching_detailed.cpp in OpenCV samples folder. At that time, my programming skills were very poor. I can't understand it even though I racked my brains. This question attracts my attention, and arouses my memory. After a whole night of hard work and debugging, I finally get it.


    Basic steps:

    1. Given the three images: blue.png, green.png, and red.png

    1. We can get the stitching result(result.png) using the stitching_detailed.cpp. .

    blender->blend(result, result_mask);
    imwrite("result.png", result);
    imwrite("result_mask.png", result_mask);
    
    1. I choose the centers from the three images, and calculate the corresponding coordinates (warped) on the stitching image, and draw in solid as follow:


    Warping images (auxiliary)...
    Compensating exposure...
    
    Blending ...
    
    Warp each center point, and draw solid circle.
    [408, 204] => [532, 224]
    [408, 204] => [359, 301]
    [408, 204] => [727, 320]
    
    Check `result.png`, `result_mask.png` and `result2.png`!
    
    Done!
    

    This is the function calcWarpedPoint I wrote to calculate the warped point on the stitching image:

    cv::Point2f calcWarpedPoint(
        const cv::Point2f& pt,
        InputArray K,                // Camera K parameter             
        InputArray R,                // Camera R parameter                
        Ptr<RotationWarper> warper,  // The Rotation Warper    
        const std::vector<cv::Point> &corners,
        const std::vector<cv::Size> &sizes)
    {
        // Calculate the wrapped point using camera parameter.
        cv::Point2f  dst = warper->warpPoint(pt, K, R);
    
        // Calculate the stitching image roi using corners and sizes.
        // the corners and sizes have already been calculated.
        cv::Point2f  tl = cv::detail::resultRoi(corners, sizes).tl();
    
        // Finally adjust the wrapped point to the stitching image.
        return cv::Point2f(dst.x - tl.x, dst.y - tl.y);
    }
    

    This is example code snippet:

    std::cout << "\nWarp each center point, and draw solid circle.\n";
    std::vector<cv::Scalar> colors = { {255,0,0}, {0, 255, 0}, {0, 0, 255} };
    for (int idx = 0; idx < img_names.size(); ++idx) {
        img = cv::imread(img_names[idx]);
        Mat K;
        cameras[idx].K().convertTo(K, CV_32F);
        Mat R = cameras[idx].R;
    
        cv::Point2f cpt = cv::Point2f(img.cols / 2, img.rows / 2);
        cv::Point pt = calcWarpedPoint(cpt, K, R, warper, corners, sizes);
        cv::circle(result, pt, 5, colors[idx], -1, cv::LINE_AA);
        std::cout << cpt << " => " << pt << std::endl;
    }
    
    std::cout << "\nCheck `result.png`, `result_mask.png` and `result2.png`!\n";
    imwrite("result2.png", result);
    

    The full code:

    /*
    * Author   : Kinght-金(https://stackoverflow.com/users/3547485/)
    * Created  : 2019/03/01 23:00 (CST)
    * Finished : 2019/03/01 07:50 (CST)
    *
    * Modified on opencv401/samples/cpp/stitching_detailed.cpp
    * From  https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/stitching_detailed.cpp
    *
    * 
    * Description: A simple opencv(4.0.1) image stitching code for Stack Overflow answers.
    * For https://stackoverflow.com/questions/54904718/compute-coordinates-from-source-images-after-stitching/54953792#comment96681412_54953792
    *
    */
    
    #include <iostream>
    #include <fstream>
    #include <string>
    #include "opencv2/opencv_modules.hpp"
    #include <opencv2/core/utility.hpp>
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/stitching/detail/autocalib.hpp"
    #include "opencv2/stitching/detail/blenders.hpp"
    #include "opencv2/stitching/detail/camera.hpp"
    #include "opencv2/stitching/detail/exposure_compensate.hpp"
    #include "opencv2/stitching/detail/matchers.hpp"
    #include "opencv2/stitching/detail/motion_estimators.hpp"
    #include "opencv2/stitching/detail/seam_finders.hpp"
    #include "opencv2/stitching/detail/warpers.hpp"
    #include "opencv2/stitching/warpers.hpp"
    
    using namespace std;
    using namespace cv;
    using namespace cv::detail;
    
    //! img_names are the input image (full) paths
    // You can download from using the links from the answer.
    //! Blue: https://i.stack.imgur.com/Yz3U1.png
    //! Green: https://i.stack.imgur.com/AbUTH.png
    //! Red: https://i.stack.imgur.com/9wcGc.png
    vector<String> img_names = {"D:/stitching/blue.png", "D:/stitching/green.png", "D:/stitching/red.png"};
    
    //! The function to calculate the warped point on the stitching image.
    cv::Point2f calcWarpedPoint(
        const cv::Point2f& pt,
        InputArray K,                // Camera K parameter
        InputArray R,                // Camera R parameter
        Ptr<RotationWarper> warper,  // The Rotation Warper
        const std::vector<cv::Point> &corners,
        const std::vector<cv::Size> &sizes)
    {
        // Calculate the wrapped point
        cv::Point2f  dst = warper->warpPoint(pt, K, R);
    
        // Calculate the stitching image roi using corners and sizes,
        // the corners and sizes have already been calculated.
        cv::Point2f  tl = cv::detail::resultRoi(corners, sizes).tl();
    
        // Finally adjust the wrapped point
        return cv::Point2f(dst.x - tl.x, dst.y - tl.y);
    }
    
    
    int main(int argc, char* argv[])
    {
        double work_megapix = 0.6;
        double seam_megapix = 0.1;
        double compose_megapix = -1;
        float conf_thresh = 1.f;
        float match_conf = 0.3f;
        float blend_strength = 5;
    
    
        // Check if have enough images
        int num_images = static_cast<int>(img_names.size());
        if (num_images < 2)
        {
            std::cout << "Need more images\n";
            return -1;
        }
    
        double work_scale = 1, seam_scale = 1, compose_scale = 1;
        bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
    
        //(1) 创建特征查找器
        Ptr<Feature2D> finder = ORB::create();
    
        // (2) 读取图像,适当缩放,并计算图像的特征描述
        Mat full_img, img;
        vector<ImageFeatures> features(num_images);
        vector<Mat> images(num_images);
        vector<Size> full_img_sizes(num_images);
        double seam_work_aspect = 1;
    
        for (int i = 0; i < num_images; ++i)
        {
            full_img = imread(img_names[i]);
            full_img_sizes[i] = full_img.size();
    
            if (full_img.empty())
            {
                cout << "Can't open image " << img_names[i] << std::endl;
                return -1;
            }
            if (!is_work_scale_set)
            {
                work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
                is_work_scale_set = true;
            }
            resize(full_img, img, Size(), work_scale, work_scale, INTER_LINEAR_EXACT);
    
            if (!is_seam_scale_set)
            {
                seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
                seam_work_aspect = seam_scale / work_scale;
                is_seam_scale_set = true;
            }
    
            computeImageFeatures(finder, img, features[i]);
            features[i].img_idx = i;
            std::cout << "Features in image #" << i + 1 << ": " << features[i].keypoints.size() << std::endl;
    
            resize(full_img, img, Size(), seam_scale, seam_scale, INTER_LINEAR_EXACT);
            images[i] = img.clone();
        }
    
        full_img.release();
        img.release();
    
    
        // (3) 创建图像特征匹配器,计算匹配信息
        vector<MatchesInfo> pairwise_matches;
        Ptr<FeaturesMatcher>  matcher = makePtr<BestOf2NearestMatcher>(false, match_conf);
        (*matcher)(features, pairwise_matches);
        matcher->collectGarbage();
    
        //! (4) 剔除外点,保留最确信的大成分
        // Leave only images we are sure are from the same panorama
        vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
        vector<Mat> img_subset;
        vector<String> img_names_subset;
        vector<Size> full_img_sizes_subset;
        for (size_t i = 0; i < indices.size(); ++i)
        {
            img_names_subset.push_back(img_names[indices[i]]);
            img_subset.push_back(images[indices[i]]);
            full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
        }
    
        images = img_subset;
        img_names = img_names_subset;
        full_img_sizes = full_img_sizes_subset;
    
        // Check if we still have enough images
        num_images = static_cast<int>(img_names.size());
        if (num_images < 2)
        {
            std::cout << "Need more images\n";
            return -1;
        }
    
        //!(5) 估计 homography
        Ptr<Estimator> estimator = makePtr<HomographyBasedEstimator>();
        vector<CameraParams> cameras;
        if (!(*estimator)(features, pairwise_matches, cameras))
        {
            cout << "Homography estimation failed.\n";
            return -1;
        }
    
        for (size_t i = 0; i < cameras.size(); ++i)
        {
            Mat R;
            cameras[i].R.convertTo(R, CV_32F);
            cameras[i].R = R;
            std::cout << "\nInitial camera intrinsics #" << indices[i] + 1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R << std::endl;
        }
    
        //(6) 创建约束调整器
        Ptr<detail::BundleAdjusterBase> adjuster = makePtr<detail::BundleAdjusterRay>();
        adjuster->setConfThresh(conf_thresh);
        Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
        refine_mask(0, 0) = 1;
        refine_mask(0, 1) = 1;
        refine_mask(0, 2) = 1;
        refine_mask(1, 1) = 1;
        refine_mask(1, 2) = 1;
        adjuster->setRefinementMask(refine_mask);
        if (!(*adjuster)(features, pairwise_matches, cameras))
        {
            cout << "Camera parameters adjusting failed.\n";
            return -1;
        }
    
        // Find median focal length
        vector<double> focals;
        for (size_t i = 0; i < cameras.size(); ++i)
        {
            focals.push_back(cameras[i].focal);
        }
    
        sort(focals.begin(), focals.end());
        float warped_image_scale;
        if (focals.size() % 2 == 1)
            warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
        else
            warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
    
    
        std::cout << "\nWarping images (auxiliary)... \n";
    
        vector<Point> corners(num_images);
        vector<UMat> masks_warped(num_images);
        vector<UMat> images_warped(num_images);
        vector<Size> sizes(num_images);
        vector<UMat> masks(num_images);
    
        // Preapre images masks
        for (int i = 0; i < num_images; ++i)
        {
            masks[i].create(images[i].size(), CV_8U);
            masks[i].setTo(Scalar::all(255));
        }
    
        // Warp images and their masks
        Ptr<WarperCreator> warper_creator = makePtr<cv::CylindricalWarper>();
        if (!warper_creator)
        {
            cout << "Can't create the warper \n";
            return 1;
        }
    
        //! Create RotationWarper
        Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
    
        //! Calculate warped corners/sizes/mask
        for (int i = 0; i < num_images; ++i)
        {
            Mat_<float> K;
            cameras[i].K().convertTo(K, CV_32F);
            float swa = (float)seam_work_aspect;
            K(0, 0) *= swa; K(0, 2) *= swa;
            K(1, 1) *= swa; K(1, 2) *= swa;
            corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
            sizes[i] = images_warped[i].size();
            warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
        }
    
        vector<UMat> images_warped_f(num_images);
        for (int i = 0; i < num_images; ++i)
            images_warped[i].convertTo(images_warped_f[i], CV_32F);
    
        std::cout << "Compensating exposure... \n";
    
        //! 计算曝光度,调整图像曝光,减少亮度差异
        Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(ExposureCompensator::GAIN_BLOCKS);
        if (dynamic_cast<BlocksCompensator*>(compensator.get()))
        {
            BlocksCompensator* bcompensator = dynamic_cast<BlocksCompensator*>(compensator.get());
            bcompensator->setNrFeeds(1);
            bcompensator->setNrGainsFilteringIterations(2);
            bcompensator->setBlockSize(32, 32);
        }
    
        compensator->feed(corners, images_warped, masks_warped);
    
        Ptr<SeamFinder> seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR);
        seam_finder->find(images_warped_f, corners, masks_warped);
    
        // Release unused memory
        images.clear();
        images_warped.clear();
        images_warped_f.clear();
        masks.clear();
    
        Mat img_warped, img_warped_s;
        Mat dilated_mask, seam_mask, mask, mask_warped;
        Ptr<Blender> blender;
        double compose_work_aspect = 1;
    
        for (int img_idx = 0; img_idx < num_images; ++img_idx)
        {
            // Read image and resize it if necessary
            full_img = imread(img_names[img_idx]);
            if (!is_compose_scale_set)
            {
                is_compose_scale_set = true;
                compose_work_aspect = compose_scale / work_scale;
    
                // Update warped image scale
                warped_image_scale *= static_cast<float>(compose_work_aspect);
                warper = warper_creator->create(warped_image_scale);
    
                // Update corners and sizes
                for (int i = 0; i < num_images; ++i)
                {
                    cameras[i].focal *= compose_work_aspect;
                    cameras[i].ppx *= compose_work_aspect;
                    cameras[i].ppy *= compose_work_aspect;
    
                    Size sz = full_img_sizes[i];
                    if (std::abs(compose_scale - 1) > 1e-1)
                    {
                        sz.width = cvRound(full_img_sizes[i].width * compose_scale);
                        sz.height = cvRound(full_img_sizes[i].height * compose_scale);
                    }
    
                    Mat K;
                    cameras[i].K().convertTo(K, CV_32F);
                    Rect roi = warper->warpRoi(sz, K, cameras[i].R);
    
                    corners[i] = roi.tl();
                    sizes[i] = roi.size();
                }
            }
    
            if (abs(compose_scale - 1) > 1e-1)
                resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
            else
                img = full_img;
            full_img.release();
            Size img_size = img.size();
    
            Mat K, R;
            cameras[img_idx].K().convertTo(K, CV_32F);
            R = cameras[img_idx].R;
    
            // Warp the current image : img => img_warped
            warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
    
            // Warp the current image mask
            mask.create(img_size, CV_8U);
            mask.setTo(Scalar::all(255));
            warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
    
            compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
            img_warped.convertTo(img_warped_s, CV_16S);
            img_warped.release();
            img.release();
            mask.release();
    
            dilate(masks_warped[img_idx], dilated_mask, Mat());
            resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
            mask_warped = seam_mask & mask_warped;
    
            if (!blender)
            {
                blender = Blender::createDefault(Blender::MULTI_BAND, false);
                Size dst_sz = resultRoi(corners, sizes).size();
                float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
                if (blend_width < 1.f){
                    blender = Blender::createDefault(Blender::NO, false);
                }
                else
                {
                    MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get());
                    mb->setNumBands(static_cast<int>(ceil(log(blend_width) / log(2.)) - 1.));
                }
                blender->prepare(corners, sizes);
            }
    
            blender->feed(img_warped_s, mask_warped, corners[img_idx]);
        }
    
        /* ===========================================================================*/
        // Blend image
        std::cout << "\nBlending ...\n";
        Mat result, result_mask;
        blender->blend(result, result_mask);
        imwrite("result.png", result);
        imwrite("result_mask.png", result_mask);
    
        std::cout << "\nWarp each center point, and draw solid circle.\n";
        std::vector<cv::Scalar> colors = { {255,0,0}, {0, 255, 0}, {0, 0, 255} };
        for (int idx = 0; idx < img_names.size(); ++idx) {
            img = cv::imread(img_names[idx]);
            Mat K;
            cameras[idx].K().convertTo(K, CV_32F);
            Mat R = cameras[idx].R;
    
            cv::Point2f cpt = cv::Point2f(img.cols / 2, img.rows / 2);
            cv::Point pt = calcWarpedPoint(cpt, K, R, warper, corners, sizes);
            cv::circle(result, pt, 5, colors[idx], -1, cv::LINE_AA);
            std::cout << cpt << " => " << pt << std::endl;
        }
    
        std::cout << "\nCheck `result.png`, `result_mask.png` and `result2.png`!\n";
        imwrite("result2.png", result);
    
        std::cout << "\nDone!\n";
        /* ===========================================================================*/
    
        return 0;
    }
    

    Some links maybe useful:

    1. stitching_detailed.cpp : https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/stitching_detailed.cpp

    2. waper->warp(), warpPoint(), warpRoi() https://github.com/opencv/opencv/blob/master/modules/stitching/src/warpers.cpp#L153

    3. resultRoi() https://github.com/opencv/opencv/blob/master/modules/stitching/src/util.cpp#L116


    Other links maybe interesting:

    1. Converting opencv remap code from c++ to python

    2. Split text lines in scanned document

    3. How do I use the relationships between Flann matches to determine a sensible homography?

    0 讨论(0)
提交回复
热议问题