Let\'s say we have two matrices A
and B
and let matrix C
be A*B
(matrix multiplication not element-wise). We wish to get
def diag(A,B):
diags = []
for x in range(len(A)):
diags.append(A[x][x] * B[x][x])
return diags
I believe the above code is that you're looking for.
I might use einsum
here:
>>> a = np.random.randint(0, 10, (3,3))
>>> b = np.random.randint(0, 10, (3,3))
>>> a
array([[9, 2, 8],
[5, 4, 0],
[8, 0, 6]])
>>> b
array([[5, 5, 0],
[3, 5, 5],
[9, 4, 3]])
>>> a.dot(b)
array([[123, 87, 34],
[ 37, 45, 20],
[ 94, 64, 18]])
>>> np.diagonal(a.dot(b))
array([123, 45, 18])
>>> np.einsum('ij,ji->i', a,b)
array([123, 45, 18])
For larger arrays, it'll be much faster than doing the multiplication directly:
>>> a = np.random.randint(0, 10, (1000,1000))
>>> b = np.random.randint(0, 10, (1000,1000))
>>> %timeit np.diagonal(a.dot(b))
1 loops, best of 3: 7.04 s per loop
>>> %timeit np.einsum('ij,ji->i', a, b)
100 loops, best of 3: 7.49 ms per loop
[Note: originally I'd done the elementwise version, ii,ii->i
, instead of matrix multiplication. The same einsum
tricks work.]