I am attempting to create a game engine that is composed of a few different types:
data Camera = Camera ...
data Light = SpotLight ... | DirectionalLight ...
I would implement it similar to:
type Position = (Double, Double, Double)
type Velocity = (Double, Double, Double)
class PhysicalObject a where
pos :: a -> Position
velocity :: a -> Velocity
data Camera = Camera
{ camPos :: Position
, camVel :: Velocity
} deriving (Eq, Show)
instance PhysicalObject Camera where
pos = camPos
velocity = camVel
Then you can do similarly for each type you define that needs PhysicalObject
.
I can think of two approaches - type classes and lenses.
class PhysicalObject m where
position :: m -> (Double, Double, Double)
velocity :: m -> (Double, Double, Double)
You would then make instances for the objects along the following lines
data Camera = Camera
{ cameraPosition :: (Double,Double,Double)
, cameraVelocity :: (Double,Double,Double)
}
instance PhysicalObject Camera where
position = cameraPosition
cameraVelocity = cameraVelocity
and similarly for your other types. Then any function which doesn't need to know the details of an object can just require its arguments to be instances of PhysicalObject
, for example:
type TimeInterval = Double
newPosition :: PhysicalObject m => TimeInterval -> m -> (Double,Double,Double)
newPosition dt obj = (x + du * dt, y + dv * dt, z + dw * dt)
where
(x,y,z) = position obj
(u,v,w) = velocity obj
However, you will struggle to write functions which modify your objects using this code - the class tells Haskell how it can access the position and velocity of an object, but not how to modify them.
The other option is to turn to the lens library. This is a bit of a beast to being with, but it allows you to write some very natural code. First, there's a bit of boilerplate
{-# LANGUAGE TemplateHaskell #-}
import Control.Lens
Now define some position and velocity data types. Don't worry about the weird field names prefixed with underscores - we won't be using them.
data Pos = Pos { _posX, _posY, _posZ :: Double }
data Vel = Vel { _velX, _velY, _velZ :: Double }
instance Show Pos where show (Pos x y z) = show (x,y,z)
instance Show Vel where show (Vel x y z) = show (x,y,z)
Now you use a bit of Template Haskell to derive lenses for your data types. This will generate type classes HasPos
and HasVel
whose methods allow you to access and modify any value that is an instance of those classes.
makeClassy ''Pos
makeClassy ''Vel
Now define your camera class, which includes a position and a velocity.
data Camera = Camera
{ _cameraPos :: Pos
, _cameraVel :: Vel } deriving (Show)
Another bit of Template Haskell will automatically create functions cameraPos
and cameraVel
that allow you to access and modify the position and velocity of your camera.
makeLenses ''Camera
Finally, declare that your camera is an instance of both the HasPos
and HasVel
classes, with a default implementation of their methods.
instance HasPos Camera where pos = cameraPos
instance HasVel Camera where vel = cameraVel
Now we're ready to do some real work. Let's define an example camera
camera = Camera (Pos 0 0 0) (Vel 10 5 0)
A function to modify the camera, returning a new one with an updated position, is
move :: (HasPos a, HasVel a) => TimeInterval -> a -> a
move dt obj = obj
& posX +~ dt * obj^.velX
& posY +~ dt * obj^.velY
& posZ +~ dt * obj^.velZ
Note that this is a completely generic function for moving any object that has a position and velocity - it's not at all specific to the Camera
type. It also has the advantage of looking a lot like imperative code!
If you now load all this into GHCI, you can see it in action
>> camera
Camera {_cameraPos = (0.0,0.0,0.0), _cameraVel = (10.0,5.0,0.0)}
>> move 0.1 camera
Camera {_cameraPos = (1.0,0.5,0.0), _cameraVel = (10.0,5.0,0.0)}
You'll want to begin to depend on things like typeclasses and object encodings. The first method is to encode the common interface as a typeclass each type inherits from.
class PhysicalObject o where
pos :: o -> Vector3
velocity :: o -> Vector3
The second is to build a common object
data PhysicalObject = PhysicalObject { poPos :: Vector3, poVelocity :: Vector3 }
data Monster = Monster { monsterPO :: PhysicalObject
, ... monsterStuff ...
}
which could even be used to instantiate the first typeclass
instance PhysicalObject PhysicalObject where
pos = poPos
velocity = poVelocity
instance PhysicalObject Monster where
pos = pos . monsterPO
velocity = velocity . monsterPO
Be careful with typeclass encodings like this, though, as too great a use of them often causes ambiguity when reading code. It can be difficult to understand the types and know which instance is being used.