Using sklearn voting ensemble with partial fit

后端 未结 5 1063
太阳男子
太阳男子 2021-01-04 10:49

Can someone please tell how to use ensembles in sklearn using partial fit. I don\'t want to retrain my model. Alternatively, can we pass pre-trained models for ensembling ?

相关标签:
5条回答
  • 2021-01-04 11:31

    Unfortunately, currently this is not possible in scikit VotingClassifier.

    But you can use http://sebastianraschka.com/Articles/2014_ensemble_classifier.html (from which VotingClassifer is implemented) to try and implement your own voting classifier which can take pre-fitted models.

    Also we can look at the source code here and modify it to our use:

    from sklearn.preprocessing import LabelEncoder
    import numpy as np
    
    le_ = LabelEncoder()
    
    # When you do partial_fit, the first fit of any classifier requires 
    all available labels (output classes), 
    you should supply all same labels here in y.
    le_.fit(y)
    
    # Fill below list with fitted or partial fitted estimators
    clf_list = [clf1, clf2, clf3, ... ]
    
    # Fill weights -> array-like, shape = [n_classifiers] or None
    weights = [clf1_wgt, clf2_wgt, ... ]
    weights = None
    
    #For hard voting:
    pred = np.asarray([clf.predict(X) for clf in clf_list]).T
    pred = np.apply_along_axis(lambda x:
                               np.argmax(np.bincount(x, weights=weights)),
                               axis=1,
                               arr=pred.astype('int'))
    
    #For soft voting:
    pred = np.asarray([clf.predict_proba(X) for clf in clf_list])
    pred = np.average(pred, axis=0, weights=weights)
    pred = np.argmax(pred, axis=1)
    
    #Finally, reverse transform the labels for correct output:
    pred = le_.inverse_transform(np.argmax(pred, axis=1))
    
    0 讨论(0)
  • 2021-01-04 11:38

    Workaround:

    VotingClassifier checks that estimators_ is set in order to understand whether it is fitted, and is using the estimators in estimators_ list for prediction. If you have pre trained classifiers, you can put them in estimators_ directly like the code below.

    However, it is also using LabelEnconder, so it assumes labels are like 0,1,2,... and you also need to set le_ and classes_ (see below).

    from sklearn.ensemble import VotingClassifier
    from sklearn.preprocessing import LabelEncoder
    
    clf_list = [clf1, clf2, clf3]
    
    eclf = VotingClassifier(estimators = [('1' ,clf1), ('2', clf2), ('3', clf3)], voting='soft')
    
    eclf.estimators_ = clf_list
    eclf.le_ = LabelEncoder().fit(y)
    eclf.classes_ = seclf.le_.classes_
    
    # Now it will work without calling fit
    eclf.predict(X,y)
    
    0 讨论(0)
  • 2021-01-04 11:42

    The Mlxtend library has an implementation of VotingEnsemble which allows you to pass in pre-fitted models. For example if you have three pre-trained models clf1, clf2, clf3. The following code would work.

    from mlxtend.classifier import EnsembleVoteClassifier
    import copy
    eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[1,1,1], refit=False)
    

    When set to false the refit argument in EnsembleVoteClassifier ensures that the classifiers are not refit.

    In general, when looking for more advanced technical features that sci-kit learn does not provide, look to mlxtend as a first point of reference.

    0 讨论(0)
  • 2021-01-04 11:43

    It's not too hard to implement the voting. Here's my implementation:

    import numpy as np 
    
    class VotingClassifier(object):
        """ Implements a voting classifier for pre-trained classifiers"""
    
        def __init__(self, estimators):
            self.estimators = estimators
    
        def predict(self, X):
            # get values
            Y = np.zeros([X.shape[0], len(self.estimators)], dtype=int)
            for i, clf in enumerate(self.estimators):
                Y[:, i] = clf.predict(X)
            # apply voting 
            y = np.zeros(X.shape[0])
            for i in range(X.shape[0]):
                y[i] = np.argmax(np.bincount(Y[i,:]))
            return y
    
    0 讨论(0)
  • 2021-01-04 11:47

    The Mlxtend library has an implementation works, you still need to call the fit function for the EnsembleVoteClassifier. Seems the fit function doesn't really modify any parameters rather checking the possible label values. In the example below, you have to give an array contains all the possible values appear in original y(in this case 1,2) to eclf2.fit It doesn't matter for X.

    import numpy as np
    from mlxtend.classifier import EnsembleVoteClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.naive_bayes import GaussianNB
    import copy
    clf1 = LogisticRegression(random_state=1)
    clf2 = RandomForestClassifier(random_state=1)
    clf3 = GaussianNB()
    X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    y = np.array([1, 1, 1, 2, 2, 2])
    
    for clf in (clf1, clf2, clf3):
        clf.fit(X, y)    
    eclf2 = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3],voting="soft",refit=False)
    eclf2.fit(None,np.array([1,2]))
    print(eclf2.predict(X))
    
    0 讨论(0)
提交回复
热议问题