Using purrr::pmap within mutate to create list-column

前端 未结 4 2267
攒了一身酷
攒了一身酷 2021-01-04 08:20

I understand how to use map to iterate over arguments in a df and create a new list column.

For example,

params <- expand.grid(param_a = c(2, 4,          


        
相关标签:
4条回答
  • 2021-01-04 08:32

    How about using rowwise and mutate directly without map:

    my_fun <- function(param_a, param_b){
      rep(5, param_a) * param_b
    }
    df.preprocessed <- dplyr::as.tbl(params) %>%
      rowwise() %>% 
      dplyr::mutate(test_var = list(my_fun(param_a, param_b))) %>% 
      tidyr::unnest()
    
    0 讨论(0)
  • 2021-01-04 08:36

    We could try

    f1 <- function(x, y, ...) rep(5, x)*y
    
    df.preprocessed <- dplyr::as.tbl(params) %>%
            dplyr::mutate(test_var = purrr::pmap(list(x = param_a
                                     ,y = param_b
                                     ,z = param_c
                                     ,u = param_d),f1
        )
       )
    df.preprocessed
    # A tibble: 36 x 5
    #   param_a param_b param_c param_d  test_var
    #     <dbl>   <dbl>   <dbl>   <dbl>    <list>
    # 1       2       3      50       1 <dbl [2]>
    # 2       4       3      50       1 <dbl [4]>
    # 3       6       3      50       1 <dbl [6]>
    # 4       2       6      50       1 <dbl [2]>
    # 5       4       6      50       1 <dbl [4]>
    # 6       6       6      50       1 <dbl [6]>
    # 7       2       9      50       1 <dbl [2]>
    # 8       4       9      50       1 <dbl [4]>
    # 9       6       9      50       1 <dbl [6]>
    #10       2       3     100       1 <dbl [2]>
    # ... with 26 more rows
    
    0 讨论(0)
  • 2021-01-04 08:54

    You can do this:

    df.preprocessed <- dplyr::as.tbl(params) %>%
      dplyr::mutate(test_var = purrr::pmap(list(x = param_a
                                                ,y = param_b
                                                ,z = param_c
                                                ,u = param_d),
                                                  ~ rep(5,.x)*.y                                                
      )
      )
    

    or

    df.preprocessed <- dplyr::as.tbl(params) %>%
      dplyr::mutate(test_var = purrr::pmap(list(x = param_a
                                                ,y = param_b
                                                ,z = param_c
                                                ,u = param_d),
                                           ~ rep(5,..1)*..2                                       
      )
      )
    

    The second way is more general as you can use ..3, ..4 etc...

    0 讨论(0)
  • 2021-01-04 08:59

    With pmap, the first argument is a list, so you can pass it your data frame directly, and then name your arguments in your function with the same names as the columns in your data frame. You'll need unnest() to unpack the list elements returned by pmap():

    df.preprocessed <- dplyr::as.tbl(params) %>%
        dplyr::mutate(test_var = purrr::pmap(., function(param_a, param_b, ...){
                                            rep(5, param_a) * param_b
                                         })) %>%
        tidyr::unnest()
    
    
    > df.preprocessed
    # A tibble: 144 x 5
       param_a param_b param_c param_d test_var
         <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
     1       2       3      50       1       15
     2       2       3      50       1       15
     3       4       3      50       1       15
     4       4       3      50       1       15
     5       4       3      50       1       15
     6       4       3      50       1       15
     7       6       3      50       1       15
     8       6       3      50       1       15
     9       6       3      50       1       15
    10       6       3      50       1       15
    # ... with 134 more rows
    
    0 讨论(0)
提交回复
热议问题