I am looking for a tidyverse-solution that can count occurrences of unique values of TF
within groups, id
in the data datatbl
I had a answer without data.table
but it was not using dplyr
. Here is my attempt using dplyr
:
#Remove the NAs
dfr <- df %>% filter(!is.na(TF)) %>%
# group by id
group_by(id) %>%
# Calculate the rle on TF for each group
do(., mrle = rle(.$TF)) %>% mutate(Total=sum(mrle$lengths)) %>%
# Trasform the rle result in a data.frame counting the values after and before changes
do( {
t<- .$mrle
#for each length generate the columns
res <- as.data.frame(lapply(seq_along(t$lengths[-length(t$lengths)]), function(i) {
#before change counts
n1 <- t$lengths[i]
#position the counts
if(i==1) {
before <- 0
} else {
before <- sum(t$lengths[1:i-1])
}
#after change conts
n2 <- t$lengths[i+1]
if(i == (length(t$lengths)-1))
after <- 0
else
after <- .$Total - before - n1 - n2
# assemble the column
c(rep(NA,before),-n1:-1,1:n2, rep(NA,after))
} ))
colnames(res) <- paste0("PM", 1:ncol(res))
#preserve the id
cbind(id=.$id,res)
})
#Join with the original data.frame
res <- df %>% mutate(rn = row_number()) %>% filter(!is.na(TF)) %>% bind_cols(dfr) %>% right_join( df %>% mutate(rn = row_number()) ) %>% select(-rn, -id1)
#Verify
mapply(all.equal, dfa,res)
# id TF PM01 PM02 PM03 PM04 PM05
#TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Here is another tidyverse approach that uses dplyr
, tidyr
and zoo
(used for its na.locf
function) package:
Firstly, instead of dropping NAs in the TF
column and then join back as all the other suggested approaches (including the data.table
approach), I wrote a helper method here, that counts forward by chunks ignoring NAs;
forward_count <- function(v) {
valid <- !is.na(v)
valid_v <- v[valid]
chunk_size = head(rle(valid_v)$lengths, -1)
idx <- cumsum(chunk_size) + 1
ones <- rep(1, length(valid_v))
ones[idx] <- 1 - chunk_size
v[valid] <- cumsum(ones)
v
}
And it works as is required by count after the change:
v <- sample(c(NA, 0, 1), 15, replace = T)
v
# [1] NA NA NA 0 1 NA 1 NA 1 1 0 1 0 0 0
forward_count(v)
# [1] NA NA NA 1 1 NA 2 NA 3 4 1 1 1 2 3
Count before the change can be implemented by reverse the vector twice with this exact same function:
-rev(forward_count(rev(v)))
# [1] NA NA NA -1 -4 NA -3 NA -2 -1 -1 -1 -3 -2 -1
Now define the headers, count forward column as fd
, count backward column as bd
using dplyr
package:
library(dplyr); library(tidyr); library(zoo);
tidy_method <- function(df) {
df %>%
group_by(id) %>%
mutate(
rle_id = cumsum(diff(na.locf(c(0, TF))) != 0), # chunk id for constant TF
PM_fd = if_else( # PM count after change headers
rle_id == head(rle_id, 1),
"head", sprintf('PM%02d', rle_id)
),
PM_bd = if_else( # shift the header up as before change headers
rle_id == tail(rle_id, 1),
"tail", sprintf('PM%02d', rle_id+1)
),
fd = forward_count(TF), # after change count
bd = -rev(forward_count(rev(TF))), # before change count
rn = seq_along(id)) %>% # row number
gather(key, value, PM_fd, PM_bd) %>% # align headers with the count
mutate(count_ = if_else(key == "PM_fd", fd, bd)) %>%
select(-key) %>% spread(value, count_) %>% # reshaper PM column as headers
select(id, TF, rn, matches('PM')) %>% # drop no longer needed columns
arrange(id, rn) %>% select(-rn)
}
Timing compared with the data.table
method:
Define the data.table
method as:
dt_method <- function(df) {
tmp_dt <- setDT(df)[, rn := .I][!is.na(TF)][, rl := rleid(TF), by = id][
, c("up", "dn") := .(seq_len(.N), -rev(seq_len(.N))), by = .(id, rl)][]
res_dt <- tmp_dt[tmp_dt[, seq_len(max(rl) - 1L), by = .(id)], on = .(id), allow.cartesian = TRUE][
rl == V1, PM := dn][rl == V1 + 1L, PM := up][
, dcast(.SD, id + TF + rn ~ sprintf("PM%02d", V1), value.var = "PM")][
df, on = .(rn, id, TF)][, -"rn"]
res_dt
}
Data: A medium sized data by repeating the sample data frame 200 times:
df_test <- bind_rows(rep(list(df), 200))
microbenchmark::microbenchmark(dt_method(df_test), tidy_method(df_test), times = 10)
#Unit: milliseconds
# expr min lq mean median uq max neval
# dt_method(df_test) 2321.5852 2439.8393 2490.8583 2456.1118 2557.4423 2834.2399 10
# tidy_method(df_test) 402.3624 412.2838 437.0801 414.5655 418.6564 540.9667 10
Order the data.table method result by id
and convert all column data types to numeric; the results from data.table
approach and tidyverse
are identical:
identical(
as.data.frame(dt_method(df_test)[order(id), lapply(.SD, as.numeric)]),
as.data.frame(tidy_method(df_test))
)
# [1] TRUE
Should probably go to the old question, but maybe this will trigger some further optimization.
To keep things flowing I have played a bit with the data.table
function and get down to about twice of the execution time of the tidyverse
version - the bottleneck is the dcast()
function, see the screenshot from profvis
below:
dt_method <- function(dt_test) {
tmp_dt <- dt_test[, rn := .I][!is.na(TF)][, rl := rleid(TF), by = id][
, c("up", "dn") := .(seq_len(.N), -rev(seq_len(.N))), by = .(id, rl)][, ':='(
rl_PM = sprintf("PM%02d", rl),
United = paste(id, TF, rn, sep = '_')
)]
res_dt <- tmp_dt[, .(sprintf("PM%02d", seq_len(max(rl) - 1L)), seq_len(max(rl) - 1L)), by = .(id)] %>%
tmp_dt[., on = .(id), allow.cartesian = TRUE] %>%
.[rl == V2, PM := dn] %>%
.[rl == V2 + 1L, PM := up] %>%
dcast(., United ~ V1, value.var = "PM") %>%
.[, c('id', 'TF', 'rn') := lapply(tstrsplit(United, '_'), as.numeric)] %>%
.[dt_test, on = .(rn, id, TF)] %>% .[, -c('rn', 'United')]
res_dt
}
Pipes were needed to deal with some odd errors, but I still consider them allowed even for data.table
.
Microbenchmark results:
Unit: milliseconds
expr min lq mean median uq max neval
dt_method(dt_test) 868.1491 932.8076 1048.5077 1029.9609 1078.0735 1518.0327 10
tidy_method(df_test) 478.6824 515.5639 557.9644 565.9422 585.3143 622.1093 10
And identical()
with fixed order of columns:
identical(
dt_method(dt_test)[order(id), lapply(.SD, as.numeric)] %>% setcolorder(c('id', 'TF', setdiff(names(.), c('id', 'TF')))) %>% as.data.frame(),
as.data.frame(tidy_method(df_test))
)
profvis
timings:
Using Uwe's answer as a base:
(Disclaimer: I am not using dplyr
too much, treated this as an exercise for myself, so it is for sure not dplyr
-optimal, see e.g. dcast
.)
library(data.table)
library(magrittr)
library(dplyr)
library(tibble)
df <- tibble(id = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1,7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7),
TF = c(NA, 0, NA, 0, 0, 1, 1, 1, NA, 0, 0, NA, 0, 0, 0,
1, 1, 1, NA, NA, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1))
dfa <- tibble(id = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7),
TF = c(NA, 0, NA, 0, 0, 1, 1, 1, NA, 0, 0, NA, 0, 0,
0, 1, 1, 1, NA, NA, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1),
PM01 = c(NA, -3, NA, -2, -1, 1, 2, 3, NA, NA, NA, NA, -3, -2, -1,
1, 2, 3, NA, NA, -2, -1, 1, NA, NA, NA, NA, NA, NA, NA),
PM02 = c(NA, NA, NA, NA, NA, -3, -2, -1, NA, 1, 2, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, -1, 1, 2, NA, NA, NA, NA, NA),
PM03 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, -2, -1, 1, NA, NA, NA, NA),
PM04 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1, 1, NA, NA, NA),
PM05 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, -1, 1, 2, 3))
tmp_dt <- setDT(df)[, rn := .I][!is.na(TF)][, rl := rleid(TF), by = id][
, c("up", "dn") := .(seq_len(.N), -rev(seq_len(.N))), by = .(id, rl)][]
res_dt <- tmp_dt[tmp_dt[, seq_len(max(rl) - 1L), by = .(id)], on = .(id), allow.cartesian = TRUE][
rl == V1, PM := dn][rl == V1 + 1L, PM := up][
, dcast(.SD, id + TF + rn ~ sprintf("PM%02d", V1), value.var = "PM")][
df, on = .(rn, id, TF)][, -"rn"]
res_dt
all.equal(res_dt, as.data.table(dfa))
As much tidyverse-sque as possible:
tmp_dplyr <- df %>%
# create row id column (required for final join to get NA rows back in)
mutate(rn = row_number()) %>%
# ignore NA rows
filter(complete.cases(.)) %>%
# number streaks of unique values within each group
group_by(id) %>%
mutate(rl = rleid(TF)) %>%
# create ascending and descending counts for each streak
# this is done once to avoid repeatedly creation of counts for each PM
# (slight performance gain)
group_by(id, rl) %>%
mutate(
up = seq_len(n()),
dn = -rev(seq_len(n()))
)
res_dplyr <- tmp_dplyr %>%
## Replicating tmp[tmp[, seq_len(max(rl) - 1L), by = .(id)], on = .(id), allow.cartesian = TRUE]
group_by(id) %>%
## Part below can for sure be optimized for code length, it's just too early now...
transmute(rl = max(rl)) %>% # Cannot transmute id directly
unique() %>%
ungroup() %>%
slice(rep(1:n(), times = rl - 1L)) %>%
group_by(id) %>%
transmute(V1 = seq_len(max(rl) - 1L)) %>%
ungroup() %>%
right_join(tmp_dplyr, by = 'id') %>%
## End or replicating tmp[tmp[, seq_len(max(rl) - 1L), by = .(id)], on = .(id), allow.cartesian = TRUE]
## Copy descending counts to rows before the switch and ascending counts to rows after the switch
mutate(
PM = ifelse(rl == V1, dn, NA),
PM = ifelse(rl == V1 + 1L, up, PM)
) %>%
## This is very not tidyverse-sque, but I don't get the gather/spread ...
dcast(id + TF + rn ~ sprintf("PM%02d", V1), value.var = "PM") %>%
full_join(df, by = c('rn', 'id', 'TF')) %>%
select(-rn)
all.equal( ## Using data.table all.equal
res_dplyr[do.call(order, res_dplyr),] %>% as.data.table(),
res_dt[do.call(order, res_dt),]
)