Using Spark 1.5 and Scala 2.10.6
I\'m trying to filter a dataframe via a field \"tags\" that is an array of strings. Looking for all rows that have the tag \'privat
I think if you use where(array_contains(...))
it will work. Here's my result:
scala> import org.apache.spark.SparkContext
import org.apache.spark.SparkContext
scala> import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.DataFrame
scala> def testData (sc: SparkContext): DataFrame = {
| val stringRDD = sc.parallelize(Seq
| ("""{ "name": "ned", "tags": ["blue", "big", "private"] }""",
| """{ "name": "albert", "tags": ["private", "lumpy"] }""",
| """{ "name": "zed", "tags": ["big", "private", "square"] }""",
| """{ "name": "jed", "tags": ["green", "small", "round"] }""",
| """{ "name": "ed", "tags": ["red", "private"] }""",
| """{ "name": "fred", "tags": ["public", "blue"] }"""))
| val sqlContext = new org.apache.spark.sql.SQLContext(sc)
| import sqlContext.implicits._
| sqlContext.read.json(stringRDD)
| }
testData: (sc: org.apache.spark.SparkContext)org.apache.spark.sql.DataFrame
scala>
| val df = testData (sc)
df: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]
scala> val report = df.select ("*").where (array_contains (df("tags"), "private"))
report: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]
scala> report.show
+------+--------------------+
| name| tags|
+------+--------------------+
| ned|[blue, big, private]|
|albert| [private, lumpy]|
| zed|[big, private, sq...|
| ed| [red, private]|
+------+--------------------+
Note that it works if you write where(array_contains(df("tags"), "private"))
, but if you write where(df("tags").array_contains("private"))
(more directly analogous to what you wrote originally) it fails with array_contains is not a member of org.apache.spark.sql.Column
. Looking at the source code for Column
, I see there's some stuff to handle contains
(constructing a Contains
instance for that) but not array_contains
. Maybe that's an oversight.
You can use ordinal to refer to the json array's for e.g. in your case df("tags")(0)
. Here is a working sample
scala> val stringRDD = sc.parallelize(Seq("""
| { "name": "ed",
| "tags": ["private"]
| }""",
| """{ "name": "fred",
| "tags": ["public"]
| }""")
| )
stringRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[87] at parallelize at <console>:22
scala> import sqlContext.implicits._
import sqlContext.implicits._
scala> sqlContext.read.json(stringRDD)
res28: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]
scala> val df=sqlContext.read.json(stringRDD)
df: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]
scala> df.columns
res29: Array[String] = Array(name, tags)
scala> df.dtypes
res30: Array[(String, String)] = Array((name,StringType), (tags,ArrayType(StringType,true)))
scala> val report = df.select("*").where(df("tags")(0).contains("private"))
report: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]
scala> report.show
+----+-------------+
|name| tags|
+----+-------------+
| ed|List(private)|
+----+-------------+