Non-linear axes for imshow in matplotlib

前端 未结 2 782
孤城傲影
孤城傲影 2021-01-03 23:30

I am generating 2D arrays on log-spaced axes (for instance, the x pixel coordinates are generated using logspace(log10(0.95), log10(2.08), n).

I want to

相关标签:
2条回答
  • 2021-01-03 23:56

    In my view, it is better to use pcolor and regular (non-converted) x and y values. pcolor gives you more flexibility and regular x and y axis are less confusing.

    import pylab as plt
    import numpy as np
    from matplotlib.colors import LogNorm
    from matplotlib.ticker import LogFormatterMathtext
    
    x=np.logspace(1, 3, 6)
    y=np.logspace(0, 2,3)
    X,Y=np.meshgrid(x,y)
    z = np.logspace(np.log10(10), np.log10(1000), 5)
    Z=np.vstack((z,z))
    
    im = plt.pcolor(X,Y,Z, cmap='gray', norm=LogNorm())
    plt.axvline(100, color='red')
    
    plt.xscale('log')
    plt.yscale('log')
    
    plt.colorbar(im, orientation='horizontal',format=LogFormatterMathtext())
    plt.show()
    

    enter image description here

    As pcolor is slow, a faster solution is to use pcolormesh instead.

    im = plt.pcolormesh(X,Y,Z, cmap='gray', norm=LogNorm())
    
    0 讨论(0)
  • 2021-01-03 23:59

    Actually, it works fine. I'm confused.

    Previously I was getting errors about "Images are not supported on non-linear axes" which is why I asked this question. But now when I try it, it works:

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.logspace(1, 3, 5)
    y = np.linspace(0, 2, 3)
    z = np.linspace(0, 1, 4)
    Z = np.vstack((z, z))
    
    plt.imshow(Z, extent=[10, 1000, 0, 1], cmap='gray')
    plt.xscale('log')
    
    plt.axvline(100, color='red')
    
    plt.show()
    

    This is better than pcolor() and pcolormesh() because

    1. it's not insanely slow and
    2. is interpolated nicely without misleading artifacts when the image is not shown at native resolution.
    0 讨论(0)
提交回复
热议问题