I was wondering if there is a way to groupby consecutive index numbers and move the groups in different columns. Here is an example of the DataFrame I\'m using:
pandas.Series
with a new pandas.MultiIndex
a = pd.factorize(df.index - np.arange(len(df)))[0]
b = df.groupby(a).cumcount()
pd.Series(df['0'].to_numpy(), [b, a]).unstack()
0 1
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973
a = pd.factorize(df.index - np.arange(len(df)))[0]
b = df.groupby(a).cumcount()
c = np.empty((b.max() + 1, a.max() + 1), float)
c.fill(np.nan)
c[b, a] = np.ravel(df)
pd.DataFrame(c)
0 1
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973
This is a groupby
+ pivot_table
m = df.index.to_series().diff().ne(1).cumsum()
(df.assign(key=df.groupby(m).cumcount())
.pivot_table(index='key', columns=m, values=0))
1 2
key
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973
My way:
df['groups']=list(df.reset_index()['index']-range(0,len(df)))
pd.concat([df[df['groups']==i][['0']].reset_index(drop=True) for i in df['groups'].unique()],axis=1)
0 0
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973
Here is one way:
from more_itertools import consecutive_groups
final=pd.concat([df.loc[i].reset_index(drop=True)
for i in consecutive_groups(df.index)],axis=1)
final.columns=range(len(final.columns))
print(final)
0 1
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973
One way from pandas
groupby
s=df.index.to_series().diff().ne(1).cumsum()
pd.concat({x: y.reset_index(drop=True) for x, y in df['0'].groupby(s)}, axis=1)
Out[786]:
1 2
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973
I think that you have assumed that the number of observations within each consecutive group will be the same. My approach is:
Prepare the data:
import pandas as pd
import numpy as np
df = pd.DataFrame(data ={'data':[19218.965703 ,19247.621650 ,19232.651322 ,19279.216956 ,19330.087371 ,19304.316973]}, index = [0,1,2,9,10,11] )
And the solution:
df['Group'] = (df.index.to_series()-np.arange(df.shape[0])).rank(method='dense')
df.reset_index(inplace=True)
df['Observations'] = df.groupby(['Group'])['index'].rank()
df.pivot(index='Observations',columns='Group', values='data')
Which returns:
Group 1.0 2.0
Observations
1.0 19218.965703 19279.216956
2.0 19247.621650 19330.087371
3.0 19232.651322 19304.316973