I\'ve endlessly looked for this and somehow nothing has solved this simple problem.
I have a dataframe called Prices in which there are 4 columns, one of wh
Yet another tidyverse
solution is:
df %>% arrange(desc(row_number()))
Just for completeness sake. There is actually no need to call seq
here. You can just use the :
-R-logic:
### Create some sample data
n=252
sampledata<-data.frame(a=sample(letters,n,replace=TRUE),b=rnorm(n,1,0.7),
c=rnorm(n,1,0.6),d=runif(n))
### Compare some different ways to reorder the dataframe
myfun1<-function(df=sampledata){df<-df[seq(nrow(df),1),]}
myfun2<-function(df=sampledata){df<-df[seq(dim(df)[1],1),]}
myfun3<-function(df=sampledata){df<-df[dim(df)[1]:1,]}
myfun4<-function(df=sampledata){df<-df[nrow(df):1,]}
### Microbenchmark the functions
microbenchmark::microbenchmark(myfun1(),myfun2(),myfun3(),myfun4(),times=1000L)
Unit: microseconds
expr min lq mean median uq max neval
myfun1() 63.994 67.686 117.61797 71.3780 87.3765 5818.494 1000
myfun2() 63.173 67.686 99.29120 70.9680 87.7865 2299.258 1000
myfun3() 56.610 60.302 92.18913 62.7635 76.9155 3241.522 1000
myfun4() 56.610 60.302 99.52666 63.1740 77.5310 4440.582 1000
The fastest way in my trial here was to use df<-df[dim(df)[1]:1,]
. However using nrow
instead of dim
is only slightly slower. Making this a question of personal preference.
Using seq
here definitely slows the process down.
UPDATE September 2018:
From a speed view there is little reason to use dplyr
here. For maybe 90% of users the basic R functionality should suffice. The other 10% need to use dplyr
for querying a database or need code translation into another language.
## hmhensen's function
dplyr_fun<-function(df=sampledata){df %>% arrange(rev(rownames(.)))}
microbenchmark::microbenchmark(myfun3(),myfun4(),dplyr_fun(),times=1000L)
Unit: microseconds
expr min lq mean median uq max neval
myfun3() 55.8 69.75 132.8178 103.85 139.95 8949.3 1000
myfun4() 55.9 68.40 115.6418 100.05 135.00 2409.1 1000
dplyr_fun() 1364.8 1541.15 2173.0717 1786.10 2757.80 8434.8 1000
Another option is to order the list by the vector you want to sort it by,
> data[order(data$Date), ]
# A tibble: 10 x 4
Date priceA priceB priceC
<dttm> <dbl> <dbl> <dbl>
1 2016-09-27 00:00:00 46.5 43.6 45.2
2 2016-09-28 00:00:00 49.2 46.1 47.6
3 2016-09-29 00:00:00 49.8 46.9 48.4
4 2016-09-30 00:00:00 50.2 47.4 48.8
5 2016-10-03 00:00:00 50.9 48.1 49.4
6 2016-10-04 00:00:00 50.9 48.2 49.3
7 2016-10-05 00:00:00 51.9 49.1 50.4
8 2016-10-06 00:00:00 52.5 49.7 51.0
9 2016-10-07 00:00:00 51.9 49.2 50.4
10 2016-10-10 00:00:00 53.1 50.4 51.9
Then if you are so inclined, you want to flip the order, reverse it,
> data[rev(order(data$Date)), ]
# A tibble: 10 x 4
Date priceA priceB priceC
<dttm> <dbl> <dbl> <dbl>
1 2016-10-10 00:00:00 53.1 50.4 51.9
2 2016-10-07 00:00:00 51.9 49.2 50.4
3 2016-10-06 00:00:00 52.5 49.7 51.0
4 2016-10-05 00:00:00 51.9 49.1 50.4
5 2016-10-04 00:00:00 50.9 48.2 49.3
6 2016-10-03 00:00:00 50.9 48.1 49.4
7 2016-09-30 00:00:00 50.2 47.4 48.8
8 2016-09-29 00:00:00 49.8 46.9 48.4
9 2016-09-28 00:00:00 49.2 46.1 47.6
10 2016-09-27 00:00:00 46.5 43.6 45.2
If you want to stick with base R, you could also use lapply()
.
do.call(cbind, lapply(df, rev))
Another tidyverse
solution and I think the simplest one is:
df %>% map_df(rev)
or using just purrr::map_df
we can do map_df(df, rev)
.
If you wanted to do this in base R use:
df <- df[rev(seq_len(nrow(df))), , drop = FALSE]
All other base R solutions posted here will have problems in the edge cases of zero row data frames (seq(0,1) == c(0, 1)
, that's why we use seq_len
) or single column data frames (data.frame(a=7:9)[3:1,] == 9:7
, that's why we use , drop = FALSE
).