How to alternate train op's in tensorflow?

前端 未结 1 1510
野性不改
野性不改 2021-01-03 14:55

I am implementing an alternating training scheme. The graph contains two training ops. The training should alternate between these.

This is relevant for research lik

相关标签:
1条回答
  • 2021-01-03 15:35

    I think the simplest way is just

    for i in range(1000):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      if i % 2 == 0:
        sess.run(train_step1, feed_dict={x: batch_xs, y_: batch_ys})
      else:
        sess.run(train_step2, feed_dict={x: batch_xs, y_: batch_ys})
    

    But if it's necessary to make a switch via tensorflow conditional flow, do it this way:

    optimizer = tf.train.GradientDescentOptimizer(0.5)
    train_step = tf.cond(tf.equal(tf.mod(global_step, 2), 0),
                         true_fn=lambda: optimizer.apply_gradients(zip(tf.gradients(cross_entropy, tvars1), tvars1), global_step),
                         false_fn=lambda: optimizer.apply_gradients(zip(tf.gradients(cross_entropy, tvars2), tvars2), global_step))
    
    0 讨论(0)
提交回复
热议问题