I have a dataframe that looks like this:
Date n
2014-02-27 4
2014-02-28 5
2014-03-01 1
2014-03-02 6
2014-03-03 7
I\
If you're doing timeseries work, I recommend using a DatetimeIndex. In this example, you can use a TimeGrouper to group by month (which groups by year-month, like in a resample):
In [11]: g = df.groupby(pd.TimeGrouper('M'))
In [12]: g['n'].cumsum()
Out[12]:
Date
2014-02-27 4
2014-02-28 9
2014-03-01 1
2014-03-02 7
2014-03-03 14
dtype: int64
In [13]: df['csn'] = g['n'].cumsum()
Note: If you're not already using a DatetimeIndex, pass over the to_datetime
function and set the index:
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
Use .groupby()
, but don't just group by month, groupby
year-month instead. Or else 2013-02
will be in the same group as 2014-02
, etc.
In [96]:
df['Month']=df['Date'].apply(lambda x: x[:7])
In [97]:
df['csn']=df.groupby(['Month'])['n'].cumsum()
In [98]:
print df
Date n Month csn
0 2014-02-27 4 2014-02 4
1 2014-02-28 5 2014-02 9
2 2014-03-01 1 2014-03 1
3 2014-03-02 6 2014-03 7
4 2014-03-03 7 2014-03 14
[5 rows x 4 columns]